67 resultados para sodium triflate

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NHA2 was recently identified as a novel sodium/hydrogen exchanger which is strongly upregulated during RANKL-induced osteoclast differentiation. Previous in vitro studies suggested that NHA2 is a mitochondrial transporter required for osteoclast differentiation and bone resorption. Due to the lack of suitable antibodies, NHA2 was studied only on RNA level thus far. To define the protein's role in osteoclasts in vitro and in vivo, we generated NHA2-deficient mice and raised several specific NHA2 antibodies. By confocal microscopy and subcellular fractionation studies, NHA2 was found to co-localize with the late endosomal and lysosomal marker LAMP1 and the V-ATPase a3 subunit, but not with mitochondrial markers. Immunofluorescence studies and surface biotinylation experiments further revealed that NHA2 was highly enriched in the plasma membrane of osteoclasts, localizing to the basolateral membrane of polarized osteoclasts. Despite strong upregulation of NHA2 during RANKL-induced osteoclast differentiation, however, structural parameters of bone, quantified by high-resolution microcomputed tomography, were not different in NHA2-deficient mice compared to wild-type littermates. In addition, in vitro RANKL stimulation of bone marrow cells isolated from wild-type and NHA2-deficient mice yielded no differences in osteoclast development and activity. Taken together, we show that NHA2 is a RANKL-induced plasmalemmal sodium/hydrogen exchanger in osteoclasts. However, our data from NHA2-deficient mice suggest that NHA2 is dispensable for osteoclast differentiation and bone resorption both in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac voltage-gated Na(+) channel Na(v)1.5 generates the cardiac Na(+) current (INa). Mutations in SCN5A, the gene encoding Na(v)1.5, have been linked to many cardiac phenotypes, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. The mutations in SCN5A define a sub-group of Na(v)1.5/SCN5A-related phenotypes among cardiac genetic channelopathies. Several research groups have proposed that Na(v)1.5 may be part of multi-protein complexes composed of Na(v)1.5-interacting proteins which regulate channel expression and function. The genes encoding these regulatory proteins have also been found to be mutated in patients with inherited forms of cardiac arrhythmias. The proteins that associate with Na(v)1.5 may be classified as (1) anchoring/adaptor proteins, (2) enzymes interacting with and modifying the channel, and (3) proteins modulating the biophysical properties of Na(v)1.5 upon binding. The aim of this article is to review these Na(v)1.5 partner proteins and to discuss how they may regulate the channel's biology and function. These recent investigations have revealed that the expression level, cellular localization, and activity of Na(v)1.5 are finely regulated by complex molecular and cellular mechanisms that we are only beginning to understand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular calcification is a major cause of morbidity and mortality in dialysis patients. Human and animal studies indicate that sodium thiosulfate (STS) may prevent the progression of vascular calcifications. The pharmacokinetics of STS in hemodialysis patients has not been investigated yet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac sodium channel Na(v)1.5 plays a key role in excitability and conduction. The 3 last residues of Na(v)1.5 (Ser-Ile-Val) constitute a PDZ-domain binding motif that interacts with the syntrophin-dystrophin complex. As dystrophin is absent at the intercalated discs, Na(v)1.5 could potentially interact with other, yet unknown, proteins at this site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a severe striated muscle disease due to the absence of dystrophin. Dystrophin deficiency results in dysfunctional sodium channels and conduction abnormalities in hearts of mdx mice. Disease progression in the mdx mouse only modestly reflects that of DMD patients, possibly due to utrophin up-regulation. Here, we investigated mice deficient in both dystrophin and utrophin [double knockout (DKO)] to assess the role of utrophin in the regulation of the cardiac sodium channel (Na(v)1.5) in mdx mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac action potential (AP) is initiated by the depolarizing inward sodium current (I(Na)). The pore-forming subunit of the cardiac sodium channel, Na(v)1.5, is the main ion channel that conducts I(Na) in cardiac cells. Despite the large number of studies investigating Na(v)1.5, year after year, we are still learning new aspects regarding its roles in normal cardiac function and in diseased states. The clinical relevance of this channel cannot be understated. The cardiac I(Na) is the target of the class 1 anti-arrhythmic drugs(1), which are nowadays less frequently prescribed because of their well-documented pro-arrhythmic properties(2). In addition, since the first description in 1995 by Keating's group(3) of mutations in patients suffering from congenital long QT syndrome (LQTS) type 3, several hundred genetic variants in SCN5A, the gene coding for Na(v)1.5, have been reported and investigated(4). Interestingly, many of these genetic variants have been found in patients with diverse cardiac manifestations(5) such as congenital LQTS type 3, Brugada syndrome, conduction disorders, and more recently, atrial fibrillation and dilated cardiomyopathy. This impressive list underlines the importance of Na(v)1.5 in cardiac pathologies and raises the question about possible unknown roles and regulatory mechanisms of this channel in cardiac cells. Recent studies have provided experimental evidence that the function of Na(v)1.5, among many other described regulatory mechanisms(6), is also modulated by the mechanical stretch of the membrane in which it is embedded(7), thus suggesting that Na(v)1.5, like other ion channels, is "mechanosensitive". What does this mean? (SELECT FULL TEXT TO CONTINUE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. Methods: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. Results: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6–1.9) (median [95% CI]) to 2.3 g (2.2–2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4–15.5) to 30.0 s (21.8–31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. Conclusions: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium nitroprusside (SNP) is used clinically as a rapid-acting vasodilator and in experimental models as donor of nitric oxide (NO). High concentrations of NO have been reported to induce cardiotoxic effects including apoptosis by the formation of reactive oxygen species. We have therefore investigated effects of SNP on the myofibrillar cytoskeleton, contractility and cell death in long-term cultured adult rat cardiomyocytes at different time points after treatment. Our results show, that SNP treatment at first results in a gradual increase of cytoskeleton degradation marked by the loss of actin labeling and fragmentation of sarcomeric structure, followed by the appearance of TUNEL-positive nuclei. Already lower doses of SNP decreased contractility of cardiomyocytes paced at 2 Hz without changes of intracellular calcium concentration. Ultrastructural analysis of the cultured cells demonstrated mitochondrial changes and disintegration of sarcomeric alignment. These adverse effects of SNP in cardiomyocytes were reminiscent of anthracycline-induced cardiotoxicity, which also involves a dysregulation of NO with the consequence of myofibrillar degradation and ultimately cell death. An inhibition of the pathways leading to the generation of reactive NO products, or their neutralization, may be of significant therapeutic benefit for both SNP and anthracycline-induced cardiotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.