2 resultados para smoothing effect
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The interest in automatic volume meshing for finite element analysis (FEA) has grown more since the appearance of microfocus CT (μCT), due to its high resolution, which allows for the assessment of mechanical behaviour at a high precision. Nevertheless, the basic meshing approach of generating one hexahedron per voxel produces jagged edges. To prevent this effect, smoothing algorithms have been introduced to enhance the topology of the mesh. However, whether smoothing also improves the accuracy of voxel-based meshes in clinical applications is still under question. There is a trade-off between smoothing and quality of elements in the mesh. Distorted elements may be produced by excessive smoothing and reduce accuracy of the mesh. In the present work, influence of smoothing on the accuracy of voxel-based meshes in micro-FE was assessed. An accurate 3D model of a trabecular structure with known apparent mechanical properties was used as a reference model. Virtual CT scans of this reference model (with resolutions of 16, 32 and 64 μm) were then created and used to build voxel-based meshes of the microarchitecture. Effects of smoothing on the apparent mechanical properties of the voxel-based meshes as compared to the reference model were evaluated. Apparent Young’s moduli of the smooth voxel-based mesh were significantly closer to those of the reference model for the 16 and 32 μm resolutions. Improvements were not significant for the 64 μm, due to loss of trabecular connectivity in the model. This study shows that smoothing offers a real benefit to voxel-based meshes used in micro-FE. It might also broaden voxel-based meshing to other biomechanical domains where it was not used previously due to lack of accuracy. As an example, this work will be used in the framework of the European project ContraCancrum, which aims at providing a patient-specific simulation of tumour development in brain and lungs for oncologists. For this type of clinical application, such a fast, automatic, and accurate generation of the mesh is of great benefit.
Resumo:
The concentrations of chironomid remains in lake sediments are very variable and, therefore, chironomid stratigraphies often include samples with a low number of counts. Thus, the effect of low count sums on reconstructed temperatures is an important issue when applying chironomid‐temperature inference models. Using an existing data set, we simulated low count sums by randomly picking subsets of head capsules from surface‐sediment samples with a high number of specimens. Subsequently, a chironomid‐temperature inference model was used to assess how the inferred temperatures are affected by low counts. The simulations indicate that the variability of inferred temperatures increases progressively with decreasing count sums. At counts below 50 specimens, a further reduction in count sum can cause a disproportionate increase in the variation of inferred temperatures, whereas at higher count sums the inferences are more stable. Furthermore, low count samples may consistently infer too low or too high temperatures and, therefore, produce a systematic error in a reconstruction. Smoothing reconstructed temperatures downcore is proposed as a possible way to compensate for the high variability due to low count sums. By combining adjacent samples in a stratigraphy, to produce samples of a more reliable size, it is possible to assess if low counts cause a systematic error in inferred temperatures.