17 resultados para smartphone app
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Smartphone-App zur Kohlenhydratberechnung Neue Technologien wie Blutzuckersensoren und moderne Insulinpumpen prägten die Therapie des Typ-1-Diabetes (T1D) in den letzten Jahren in wesentlichem Ausmaß. Smartphones sind aufgrund ihrer rasanten technischen Entwicklung eine weitere Plattform für Applikationen zur Therapieunterstützung bei T1D. GoCARB Hierbei handelt es sich um ein zur Kohlenhydratberechnung entwickeltes System für Personen mit T1D. Die Basis für Endanwender stellt ein Smartphone mit Kamera dar. Zur Berechnung werden 2 mit dem Smartphone aus verschiedenen Winkeln aufgenommene Fotografien einer auf einem Teller angerichteten Mahlzeit benötigt. Zusätzlich ist eine neben dem Teller platzierte Referenzkarte erforderlich. Die Grundlage für die Kohlenhydratberechnung ist ein Computer-Vision-gestütztes Programm, das die Mahlzeiten aufgrund ihrer Farbe und Textur erkennt. Das Volumen der Mahlzeit wird mit Hilfe eines dreidimensional errechneten Modells bestimmt. Durch das Erkennen der Art der Mahlzeiten sowie deren Volumen kann GoCARB den Kohlenhydratanteil unter Einbeziehung von Nährwerttabellen berechnen. Für die Entwicklung des Systems wurde eine Bilddatenbank von mehr als 5000 Mahlzeiten erstellt und genutzt. Resümee Das GoCARB-System befindet sich aktuell in klinischer Evaluierung und ist noch nicht für Patienten verfügbar.
Resumo:
Crowdsourcing linguistic phenomena with smartphone applications is relatively new. In linguistics, apps have predominantly been developed to create pronunciation dictionaries, to train acoustic models, and to archive endangered languages. This paper presents the first account of how apps can be used to collect data suitable for documenting language change: we created an app, Dialäkt Äpp (DÄ), which predicts users’ dialects. For 16 linguistic variables, users select a dialectal variant from a drop-down menu. DÄ then geographically locates the user’s dialect by suggesting a list of communes where dialect variants most similar to their choices are used. Underlying this prediction are 16 maps from the historical Linguistic Atlas of German-speaking Switzerland, which documents the linguistic situation around 1950. Where users disagree with the prediction, they can indicate what they consider to be their dialect’s location. With this information, the 16 variables can be assessed for language change. Thanks to the playfulness of its functionality, DÄ has reached many users; our linguistic analyses are based on data from nearly 60,000 speakers. Results reveal a relative stability for phonetic variables, while lexical and morphological variables seem more prone to change. Crowdsourcing large amounts of dialect data with smartphone apps has the potential to complement existing data collection techniques and to provide evidence that traditional methods cannot, with normal resources, hope to gather. Nonetheless, it is important to emphasize a range of methodological caveats, including sparse knowledge of users’ linguistic backgrounds (users only indicate age, sex) and users’ self-declaration of their dialect. These are discussed and evaluated in detail here. Findings remain intriguing nevertheless: as a means of quality control, we report that traditional dialectological methods have revealed trends similar to those found by the app. This underlines the validity of the crowdsourcing method. We are presently extending DÄ architecture to other languages.
Resumo:
Crowdsourcing linguistic phenomena with smartphone applications is relatively new. Apps have been used to train acoustic models for automatic speech recognition (de Vries et al. 2014) and to archive endangered languages (Iwaidja Inyaman Team 2012). Leemann and Kolly (2013) developed a free app for iOS—Dialäkt Äpp (DÄ) (>78k downloads)—to document language change in Swiss German. Here, we present results of sound change based on DÄ data. DÄ predicts the users’ dialects: for 16 variables, users select their dialectal variant. DÄ then tells users which dialect they speak. Underlying this prediction are maps from the Linguistic Atlas of German-speaking Switzerland (SDS, 1962-2003), which documents the linguistic situation around 1950. If predicted wrongly, users indicate their actual dialect. With this information, the 16 variables can be assessed for language change. Results revealed robustness of phonetic variables; lexical and morphological variables were more prone to change. Phonetic variables like to lift (variants: /lupfə, lʏpfə, lipfə/) revealed SDS agreement scores of nearly 85%, i.e., little sound change. Not all phonetic variables are equally robust: ladle (variants: /xælə, xællə, xæuə, xæɫə, xæɫɫə/) exhibited significant sound change. We will illustrate the results using maps that show details of the sound changes at hand.
Resumo:
This paper presents an overview of the Mobile Data Challenge (MDC), a large-scale research initiative aimed at generating innovations around smartphone-based research, as well as community-based evaluation of mobile data analysis methodologies. First, we review the Lausanne Data Collection Campaign (LDCC), an initiative to collect unique longitudinal smartphone dataset for the MDC. Then, we introduce the Open and Dedicated Tracks of the MDC, describe the specific datasets used in each of them, discuss the key design and implementation aspects introduced in order to generate privacy-preserving and scientifically relevant mobile data resources for wider use by the research community, and summarize the main research trends found among the 100+ challenge submissions. We finalize by discussing the main lessons learned from the participation of several hundred researchers worldwide in the MDC Tracks.
Resumo:
Unglaublich, aber wahr: Wir versuchen heutiges Hightech mit Patentgesetzen in den Griff zu bekommen, die aus dem 15. Jahrhundert stammen. Das kann nicht gutgehen. Ein kleiner historischer Abriss.
Resumo:
Der Artikel thematisiert und problematisiert die Beiträge protestantischer Theologie zu einer Ethik der Nachhaltigkeit.
Resumo:
Do you pronounce the /r/ in 'arm'? Do you call a shelf a 'sheuf'? And what on earth is a 'hoddy-doddy'? There is extensive variation in English dialects: this is why your answers to such questions will allow this app to localize your broader dialect region on a map of England. Did your home dialect change over time? Our algorithm is based on historical data from the Survey of English Dialects. If it guesses where you are from correctly, your home dialect has probably remained stable over the past decades. If the guess is far off, however, it is probably because of dialect change. - Can we localize your dialect based on your pronunciation of 26 words? - Record your dialect and listen to recordings of other users and to historical dialect recordings! - Choose a pronunciation variant, e.g. 'sheuf', and discover where in England it is used...or choose a place and explore its dialect!