5 resultados para single-pass

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dialysate regeneration by sorbents is an alternative to conventional single-pass dialysis. Little is known about the capacity of sorbents to clear dialysate of “middle molecules” and protein-bound uremic toxins. We studied p-cresol sulfate (PCS) and β-2-microglobulin (β2M) removal from dialysate by a sorbent: 1. PCS (40 mg PCS dissolved in 4 L of fresh dialysate) was recirculated through a sorbent cartridge (SORB Technology, Inc.) for analysis of PCS removal. 2. Spent peritoneal dialysate was recirculated on the “blood” side of a high-flux dialyzer. On the “dialysate” side of the membrane, bicarbonate dialysate was recirculated through a sorbent cartridge. β2M was measured in both streams. Two results are of particular importance for the use of regenerated fluid in chronic dialysis: 1. PCS was virtually completely removed from the dialysate. On average, PCS concentration was reduced to 1.4% of the starting concentration after 60 minutes. PCS extraction across the sorbent was nearly complete at any time. 2. β2M was on average reduced to 14.3% of the starting concentration after 60 minutes. Postsorbent concentrations were consistently below the validated range of the test method. We conclude that PCS and β2M are efficiently removed from the dialysate by commercially available sorbent technology. Spent peritoneal dialysis fluid can be cleared of β2M when circulated against sorbent-regenerated dialysate using a high-flux membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FGFRL1 is a single-pass transmembrane protein with three extracellular Ig domains. When overexpressed in CHO cells or related cell types, it induces cell-cell fusion and formation of large, multinucleated syncytia. For this fusion-promoting activity, only the membrane-proximal Ig domain (Ig3) and the transmembrane domain are required. It does not matter whether the transmembrane domain is derived from FGFRL1 or from another receptor, but the distance of the Ig3 domain to the membrane is crucial. Fusion can be inhibited with soluble recombinant proteins comprising the Ig1-Ig2-Ig3 or the Ig2-Ig3 domains as well as with monoclonal antibodies directed against Ig3. Mutational analysis reveals a hydrophobic site in Ig3 that is required for fusion. If a single amino acid from this site is mutated, fusion is abolished. The site is located on a β-sheet, which is part of a larger β-barrel, as predicted by computer modeling of the 3D structure of FGFRL1. It is possible that this site interacts with a target protein of neighboring cells to trigger cell-cell fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to infer reactions of treeline and alpine vegetation to climatic change, past vegetation changes are reconstructed on the basis of pollen, macrofossil and charcoal analysis. The sampled sediment cores originate from the small pond Emines, located at the Sanetsch Pass (connecting the Valais and Bern, Switzerland) at an altitude of 2288 m a.s.l. Today's treeline is at ca. 2200 m a.s.l. in the area, though due to special pass (saddle) conditions it is locally depressed to ca. 2060 m a.s.l. Our results reveal that the area around Emines was covered by treeless alpine vegetation during most of the past 12,000 years. Single individuals of Betula, Larix decidua and possibly Pinus cembra occurred during the Holocene. Major centennial to millennial-scale responses of treeline vegetation to climatic changes are evident. However, alpine vegetation composition remained rather stable between 11,500 and 6000 cal. BP, showing that Holocene climatic changes of +/− 1 °C hardly influenced the local vegetation at Emines. The rapid warming of 3–4 °C at the Late Glacial/Holocene transition (11,600 cal. BP) caused significant altitudinal displacements of alpine species that were additionally affected by the rapid upward movement of trees and shrubs. Since the beginning of the Neolithic, vegetation changes at Sanetsch Pass resulted from a combination of climate change and human impact. Anthropogenic fire increase and land-use change combined with a natural change from subcontinental to more oceanic climate during the second half of the Holocene led to the disappearance of P. cembra in the study area, but favoured the occurrence of Picea abies and Alnus viridis. The mid- to late-Holocene decline of Abies alba was primarily a consequence of human impact, since this mesic species should have benefitted from a shift to more oceanic conditions. Future alpine vegetation changes will be a function of the amplitude and rapidity of global warming as well as human land use. Our results imply that alpine vegetation at our treeline pass site was never replaced by forests since the last ice-age. This may change in the future if anticipated climate change will induce upslope migration of trees. The results of this study emphasise the necessity of climate change mitigation in order to prevent biodiversity losses as a consequence of unprecedented community and species displacement in response to climatic change.