31 resultados para single-chain antibody fragments

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major goal in antibody design for cancer therapy is to tailor the pharmacokinetic properties of the molecule according to specific treatment requirements. Key parameters determining the pharmacokinetics of therapeutic antibodies are target specificity, affinity, stability, and size. Using the p185HER-2 (HER-2)-specific scFv 4D5 as model system, we analyzed how changes in molecular weight and valency independently affect antigen binding and tumor localization. By employing multimerization and PEGylation, four different antibody formats were generated and compared with the scFv 4D5. First, dimeric and tetrameric miniantibodies were constructed by fusion of self-associating, disulfide-linked peptides to the scFv 4D5. Second, we attached a 20-kDa PEG moiety to the monovalent scFv and to the divalent miniantibody at the respective C terminus. In all formats, serum stability and full binding reactivity of the scFv 4D5 were retained. Functional affinity, however, did change. An avidity increase was achieved by multimerization, whereas PEGylation resulted in a 5-fold decreased affinity. Nevertheless, the PEGylated monomer showed an 8.5-fold, and the PEGylated dimer even a 14.5-fold higher tumor accumulation than the corresponding scFv, 48 h post-injection, because of a significantly longer serum half-life. In comparison, the non-PEGylated bivalent and tetravalent miniantibodies showed only a moderate increase in tumor localization compared with the scFv, which correlated with the degree of multimerization. However, these non-PEGylated formats resulted in higher tumor-to-blood ratios. Both multimerization and PEGylation represent thus useful strategies to tailor the pharmacokinetic properties of therapeutic antibodies and their combined use can additively improve tumor targeting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The cysteine-rich/spacer domains of ADAMTS13 contain a major binding site for antibodies in patients with acquired thrombotic thrombocytopenic purpura (TTP). OBJECTIVE: To study the heterogeneity of the antibody response towards these domains an immunoglobulin V-gene phage-display library was constructed to isolate monoclonal anti-ADAMTS13 antibodies from the immunoglobulin repertoire of a patient with acquired TTP. METHODS: Combined variable heavy chain (VH) and variable light chain (VL) segments, expressed as single-chain Fv fragments (scFv), were selected for binding to an ADAMTS13 fragment consisting of the disintegrin/thrombospondin type-1 repeat 1 (TSP1)/cysteine-rich/spacer domains. RESULTS: Seven different scFv antibody clones were identified that were assigned to four groups based on their homology to VH germline gene segments. Epitope-mapping revealed that scFv I-9 (VH1-69), I-26 (VH1-02), and I-41 (VH3-09) bind to an overlapping binding site in the ADAMTS13 spacer domain, whereas scFv I-16 (VH3-07) binds to the disintegrin/TSP1 domains. The affinity of scFv for the disintegrin/TSP1/cysteine-rich/spacer domain was determined by surface plasmon resonance analysis and the dissociation constants ranged from 3 to 254 nM. The scFv partially inhibited ADAMTS13 activity. However, full-length IgG prepared from the variable domains of scFv I-9 inhibited ADAMTS13 activity more profoundly. Plasma of six patients with acquired TTP competed for binding of scFv I-9 to ADAMTS13. CONCLUSION: Our data indicate that multiple B-cell clones producing antibodies directed against the spacer domain are present in the patient analyzed in this study. Our findings also suggest that antibodies with a similar epitope specificity as scFv I-9 are present in plasma of other patients with acquired TTP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific delivery of anticancer agents to tumors represents a promising therapeutic strategy because it increases efficacy and reduces toxicity to normal tissues compared with untargeted drugs. Sterically stabilized immunoliposomes (SIL), guided by antibodies that specifically bind to well internalizing antigens on the tumor cell surface, are effective nanoscale delivery systems capable of accumulating large quantities of anticancer agents at the tumor site. The epithelial cell adhesion molecule (EpCAM) holds major promise as a target for antibody-based cancer therapy due to its abundant expression in many solid tumors and its limited distribution in normal tissues. We generated EpCAM-directed immunoliposomes by covalently coupling the humanized single-chain Fv antibody fragment 4D5MOCB to the surface of sterically stabilized liposomes loaded with the anticancer agent doxorubicin. In vitro, the doxorubicin-loaded immunoliposomes (SIL-Dox) showed efficient cell binding and internalization and were significantly more cytotoxic against EpCAM-positive tumor cells than nontargeted liposomes (SL-Dox). In athymic mice bearing established human tumor xenografts, pharmacokinetic and biodistribution analysis of SIL-Dox revealed long circulation times in the blood with a half-life of 11 h and effective time-dependent tumor localization, resulting in up to 15% injected dose per gram tissue. These favorable pharmacokinetic properties translated into potent antitumor activity, which resulted in significant growth inhibition (compared with control mice), and was more pronounced than that of doxorubicin alone and nontargeted SL-Dox at low, nontoxic doses. Our data show the promise of EpCAM-directed nanovesicular drug delivery for targeted therapy of solid tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human granulocytes express several glycoproteins of the CEACAM family. One family member, CEACAM3, operates as a single-chain phagocytic receptor, initiating the detection, internalization, and destruction of a limited set of gram-negative bacteria. In contrast, the function of CEACAM4, a closely related protein, is completely unknown. This is mainly a result of a lack of a specific ligand for CEACAM4. By generating chimeric proteins containing the extracellular bacteria-binding domain of CEACAM3 and the transmembrane and cytoplasmic part of CEACAM4 (CEACAM3/4) we demonstrate that this chimeric receptor can trigger efficient phagocytosis of attached particles. Uptake of CEACAM3/4-bound bacteria requires the intact ITAM of CEACAM4, and this motif is phosphorylated by Src family PTKs upon receptor clustering. Furthermore, SH2 domains derived from Src PTKs, PI3K, and the adapter molecule Nck are recruited and associate directly with the phosphorylated CEACAM4 ITAM. Deletion of this sequence motif or inhibition of Src PTKs blocks CEACAM4-mediated uptake. Together, our results suggest that this orphan receptor of the CEACAM family has phagocytic function and prompt efforts to identify CEACAM4 ligands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Degradation of immunoglobulins is an effective strategy of bacteria to evade the immune system. We have tested whether human IgG is a substrate for gingipain K of Porphyromonas gingivalis and found that the enzyme can hydrolyze subclass 1 and 3 of human IgG. The heavy chain of IgG(1) was cleaved at a single site within the hinge region, generating Fab and Fc fragments. IgG(3) was also cleaved within the heavy chain, but at several sites around the CH2 region. Investigation of the enzyme kinetics of IgG proteolysis by gingipain K, using FPLC- and isothermal titration calorimetry-based assays followed by Hill plots, revealed non-Michaelis-Menten kinetics involving a mechanism of positive cooperativity. In ex vivo studies, it was shown that gingipain K retained its IgG hydrolyzing activity in human plasma despite the high content of natural protease inhibitors; that IgG(1) cleavage products were detected in gingival crevicular fluid samples from patients with severe periodontitis; and that gingipain K treatment of serum samples from patients with high antibody titers against P. gingivalis significantly hindered opsonin-dependent phagocytosis of clinical isolates of P. gingivalis by neutrophils. Altogether, these findings underline a biological function of gingipain K as an IgG protease of pathophysiological importance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND High-dose chemotherapy (HDCT) with autologous stem cell transplantation (ASCT) has been reported to confer better prognosis in systemic light chain AL-amyloidosis as compared with conventional chemotherapy. However, only limited data are available so far on treatment and outcome of AL-amyloidosis patients in Switzerland. METHODS Within a single-centre cohort of patients with biopsy confirmed AL-amyloidosis diagnosed between January 1995 and December 2012, we aimed to investigate treatment effects in patients treated with conventional chemotherapy versus HDCT with ASCT. RESULTS We identified 50 patients with AL-amyloidosis treated with conventional chemotherapy and 13 patients who received HDCT with ASCT. Clinical characteristics differed between the groups for the age of the patients (59 years for patients with ASCT/HDCT vs 69 years; p= 0.0006) and the troponin-T value (0.015 μg/l vs 0.08 μg/l; p = 0.0279). Patients with ASCT showed a trend towards better overall survival, with median survival not yet reached compared with 53 months in patients on conventional chemotherapy (p = 0.0651). CONCLUSION Our results suggest that light chain AL-amyloidosis patients considered fit to undergo HDCT and ASCT may have a better outcome than patients treated exclusively with conventional chemotherapy regimens; however, the better performance status of patients receiving HDCT may have added to this treatment effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have previously isolated anti-FcepsilonRIalpha autoantibodies from phage libraries of healthy donors and urticaria patients. Strikingly, the same antibody, LTMalpha15, was isolated from both libraries. Sequence analysis revealed a germline configuration of the LTMalpha15 variable heavy (V(H)) chain with a slightly mutated variable light (V(L)) chain supporting its classification as a natural autoantibody. Distribution analysis of anti-FcepsilonRIalpha autoantibodies by functional or serological tests delivered conflicting data. For this reason we have developed a new real-time PCR to analyse the distribution of LTMalpha15V(H) in healthy donors and urticaria patients. Our new bioinformatic program permitted the design of a minor groove binder (MGB) TaqMan probe that specifically detected the LTMalpha15V(H). We were able to demonstrate a broad range of rearranged V(H) gene copy number without any correlation to the state of health. Monitoring LTMalpha15V(H) gene copy number in a single donor over a period of 70 days revealed a time-related fluctuation of circulating B cells carrying LTMalpha15V(H). We propose that our real-time PCR may serve as a model for the quantification of natural antibody sequences at a monoclonal level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Through overexpression and aberrant activation in many human tumors, the IGF system plays a key role in tumor development and tumor cell proliferation. Different strategies targeting IGF-I receptor (IGFI-R) have been developed, and recent studies demonstrated that combined treatments with cytostatic drugs enhance the potency of anti-IGFI-R therapies. Objective: The objective of the study was to examine the IGFI-R expression status in neuroendocrine tumors of the gastroenteropancreatic system (GEP-NETs) in comparison with healthy tissues and use potential overexpression as a target for novel anti-IGFI-R immunoliposomes. Experimental Design: A human tumor tissue array and samples from different normal tissues were investigated by immunohistochemistry. An IGFI-R antagonistic antibody (1H7) was coupled to the surface of sterically stabilized liposomes loaded with doxorubicin. Cell lines from different tumor entities were investigated for liposomal association studies in vitro. For in vivo experiments, neuroendocrine tumor xenografts were used for evaluation of pharmacokinetic and therapeutic properties of the novel compound. Results: Immunohistochemistry revealed significant IGFI-R overexpression in all investigated GEP-NETs (n = 59; staining index, 229.1 +/- 3.1%) in comparison with normal tissues (115.7 +/- 3.7%). Furthermore, anti-IGFI-R immunoliposomes displayed specific tumor cell association (44.2 +/- 1.6% vs. IgG liposomes, 0.8 +/- 0.3%; P < 0.0001) and internalization in human neuroendocrine tumor cells in vitro and superior antitumor efficacy in vivo (life span 31.5 +/- 2.2 d vs. untreated control, 19 +/- 0.6, P = 0.008). Conclusion: IGFI-R overexpression seems to be a common characteristic of otherwise heterogenous NETs. Novel anti-IGFI-R immunoliposomes have been developed and successfully tested in a preclinical model for human GEP-NETs. Moreover in vitro experiments indicate that usage of this agent could also present a promising approach for other tumor entities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Naturally occurring anti-idiotypic antibodies structurally mimic the original antibody epitope. Anti-idiotypes, therefore, are interesting tools for the portrayal of conformational B-cell epitopes of allergens. In this study we used this strategy particularly for major timothy grass pollen (Phleum pratense) allergen Phl p 1. METHODS AND RESULTS: We used a combinatorial phage display library constructed from the peripheral IgG repertoire of a grass pollen allergic patient which was supposed to contain anti-idiotypic Fab specificities. Using purified anti-Phl p 1 IgG for biopanning, several Fab displaying phage clones could be isolated. 100 amplified colonies were screened for their binding capacity to anti-Phl p 1-specific antibodies, finally resulting in four distinct Fab clones according to sequence analysis. Interestingly, heavy chains of all clones derived from the same germ line sequence and showed high homology in their CDRs. Projecting their sequence information on the surface of the natural allergen Phl p 1 (PDB ID: 1N10) indicated matches on the N-terminal domain of the homo-dimeric allergen, including the bridging region between the two monomers. The resulting epitope patches were formed by spatially distant sections of the primary allergen sequence. CONCLUSION: In this study we report that anti-idiotypic specificities towards anti-Phl p 1 IgG, selected from a Fab library of a grass pollen allergic patient, mimic a conformational epitope patch being distinct from a previously reported IgE epitope area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human invariant natural killer T (NKT) cell TCRs bind to CD1d via an "invariant" Vα24-Jα18 chain (iNKTα) paired to semi-invariant Vβ11 chains (iNKTβ). Single-amino acid variations at position 93 (p93) of iNKTα, immediately upstream of the "invariant" CDR3α region, have been reported in a substantial proportion of human iNKT-cell clones (4-30%). Although p93, a serine in most human iNKT-cell TCRs, makes no contact with CD1d, it could affect CD1d binding by altering the conformation of the crucial CDR3α loop. By generating recombinant refolded iNKT-cell TCRs, we show that natural single-nucleotide variations in iNKTα, translating to serine, threonine, asparagine or isoleucine at p93, exert a powerful effect on CD1d binding, with up to 28-fold differences in affinity between these variants. This effect was observed with CD1d loaded with either the artificial α-galactosylceramide antigens KRN7000 or OCH, or the endogenous glycolipid β-galactosylceramide, and its importance for autoreactive recognition of endogenous lipids was demonstrated by the binding of variant iNKT-cell TCR tetramers to cell surface expressed CD1d. The serine-containing variant showed the strongest CD1d binding, offering an explanation for its predominance in vivo. Complementary molecular dynamics modeling studies were consistent with an impact of p93 on the conformation of the CDR3α loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Switzerland, children are prescribed 7.5-12.5 μg per day of vitamin D(3) dissolved in alcohol, but many families do not adhere to the recommendation. The aim of the trial was to compare the acceptance of vitamin D(3) dissolved in alcohol or in medium-chain triglycerides among mothers of Swiss newborn infants. The acceptance was tested in 42 healthy newborn infants (20 girls and 22 boys) aged between 2 and 7 days. Their neonatal body weight ranged between 2.225 and 4.150 kg, and the gestational age between 36 1/7 and 41 3/7 weeks. The blinded mothers rated the facial reaction of their children by pointing on a facial hedonic scale. Thirty eight of the 41 mothers, who brought the comparison to completion, assigned a better score to the oily preparation with no difference in the remaining three cases (P < 0.0001). The acceptance for the oily preparation was significantly better both among mothers whose babies were initially presented the alcoholic preparation and among mothers whose babies were initially presented the oily preparation. Furthermore, the acceptance for the oily preparation was better irrespective of gender of the infant or parity of the mother. In conclusion, from the perspective of mothers, Swiss newborn infants prefer the taste of the oily vitamin D(3) preparation over the alcoholic preparation.