12 resultados para sine fatigue (cyclic loading)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background It has been demonstrated that frequency modulation of loading influences cellular response and metabolism in 3D tissues such as cartilage, bone and intervertebral disc. However, the mechano-sensitivity of cells in linear tissues such as tendons or ligaments might be more sensitive to changes in strain amplitude than frequency. Here, we hypothesized that tenocytes in situ are mechano-responsive to random amplitude modulation of strain. Methods We compared stochastic amplitude-modulated versus sinusoidal cyclic stretching. Rabbit tendon were kept in tissue-culture medium for twelve days and were loaded for 1h/day for six of the total twelve culture days. The tendons were randomly subjected to one of three different loading regimes: i) stochastic (2 – 7% random strain amplitudes), ii) cyclic_RMS (2–4.42% strain) and iii) cyclic_high (2 - 7% strain), all at 1 Hz and for 3,600 cycles, and one unloaded control. Results At the end of the culture period, the stiffness of the “stochastic” group was significantly lower than that of the cyclic_RMS and cyclic_high groups (both, p < 0.0001). Gene expression of eleven anabolic, catabolic and inflammatory genes revealed no significant differences between the loading groups. Conclusions We conclude that, despite an equivalent metabolic response, stochastically stretched tendons suffer most likely from increased mechanical microdamage, relative to cyclically loaded ones, which is relevant for tendon regeneration therapies in clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loading is important to maintain the balance of matrix turnover in the intervertebral disc (IVD). Daily cyclic diurnal assists in the transport of large soluble factors across the IVD and its surrounding circulation and applies direct and indirect stimulus to disc cells. Acute mechanical injury and accumulated overloading, however, could induce disc degeneration. Recently, there is more information available on how cyclic loading, especially axial compression and hydrostatic pressure, affects IVD cell biology. This review summarises recent studies on the response of the IVD and stem cells to applied cyclic compression and hydrostatic pressure. These studies investigate the possible role of loading in the initiation and progression of disc degeneration as well as quantifying a physiological loading condition for the study of disc degeneration biological therapy. Subsequently, a possible physiological/beneficial loading range is proposed. This physiological/beneficial loading could provide insight into how to design loading regimes in specific system for the testing of various biological therapies such as cell therapy, chemical therapy or tissue engineering constructs to achieve a better final outcome. In addition, the parameter space of 'physiological' loading may also be an important factor for the differentiation of stem cells towards most ideally 'discogenic' cells for tissue engineering purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-regeneration capacity of articular cartilage is limited, due to its avascular and aneural nature. Loaded explants and cell cultures demonstrated that chondrocyte metabolism can be regulated via physiologic loading. However, the explicit ranges of mechanical stimuli that correspond to favourable metabolic response associated with extracellular matrix (ECM) synthesis are elusive. Unsystematic protocols lacking this knowledge produce inconsistent results. This study aims to determine the intrinsic ranges of physical stimuli that increase ECM synthesis and simultaneously inhibit nitric oxide (NO) production in chondrocyte-agarose constructs, by numerically re-evaluating the experiments performed by Tsuang et al. (2008). Twelve loading patterns were simulated with poro-elastic finite element models in ABAQUS. Pressure on solid matrix, von Mises stress, maximum principle stress and pore pressure were selected as intrinsic mechanical stimuli. Their development rates and magnitudes at the steady state of cyclic loading were calculated with MATLAB at the construct level. Concurrent increase in glycosaminoglycan and collagen was observed at 2300 Pa pressure and 40 Pa/s pressure rate. Between 0-1500 Pa and 0-40 Pa/s, NO production was consistently positive with respect to controls, whereas ECM synthesis was negative in the same range. A linear correlation was found between pressure rate and NO production (R = 0.77). Stress states identified in this study are generic and could be used to develop predictive algorithms for matrix production in agarose-chondrocyte constructs of arbitrary shape, size and agarose concentration. They could also be helpful to increase the efficacy of loading protocols for avascular tissue engineering. Copyright (c) 2010 John Wiley \& Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: This study investigates by means of a new bone-prosthesis interface motion detector whether conceptual design differences of femoral stems are reflected in their primary stability pattern. DESIGN: An in vitro experiment using a biaxial materials testing machine in combination with three-dimensional motion measurement devices was performed. BACKGROUND: Primary stability of uncemented total hip replacements is considered to be a prerequisite for the quality of bony ongrowth to the femoral stem. Dynamic motion as a response to loading as well as total motion of the prosthesis have to be considered under quasi-physiological cyclic loading conditions. METHODS: Seven paired fresh cadaveric femora were used for the testing of two types of uncemented femoral stems with different anchoring concepts: CLS stem (Spotorno) and Cone Prosthesis (Wagner). Under sinusoidal cyclic loading mimicking in vivo hip joint forces a new measurement technique was applied allowing for the analysis of the three-dimensional interface motion. RESULTS: Considerable differences between the two prostheses could be detected both in their dynamic motion and total motion behaviour. Whereas the CLS stem, due to the wedge-shaped concept, provides smaller total motions, the longitudinal ribs of the Cone prostheses result in a substantially smaller dynamic motion. CONCLUSIONS: The measuring technique provided reliable and accurate data illustrating the three-dimensional interface motion of uncemented femoral stems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: In highly emetogenic chemotherapy, the recommended dose of the serotonin-receptor antagonist ondansetron (5 mg/m(2) q8h) may be insufficient to prevent chemotherapy-induced nausea and vomiting. In adults, ondansetron-loading doses (OLD) of 32 mg are safe. We aimed to evaluate in children the safety of an OLD of 16 mg/m(2) (top, 24 mg) i.v., followed by two doses of 5 mg/m(2) q8h. MATERIALS AND METHODS: This retrospective single-center study included all pediatric oncology patients having received >/=1 OLD between 2002 and 2005. Adverse events (AE) definitely, probably, or possibly related to OLD were studied, excluding AE not or unlikely related to the OLD. Associations between potential predictors and at least moderate AE were analyzed by mixed logistic regression. RESULTS: Of 167 patients treated with chemotherapy, 37 (22%) received 543 OLD. The most common AE were hypotension, fatigue, injection site reaction, headache, hot flashes/flushes, and dizziness. At least mild AE were described in 139 OLD (26%), at least moderate AE in 23 (4.2%), and severe AE in 5 (0.9%; exact 95% confidence interval [CI], 0.4-2.1). Life-threatening or lethal AE were not observed (0.0%; 0.0-0.6). At least moderate AE were significantly more frequent in female patients (odds ratio [OR] 3.5; 95% CI 1.4-8.8; p = 0.010), after erroneously given second OLD (17.0; 1.9-154; p = 0.012) and higher 24 h cumulative surface corrected dose (1.26 per mg/m(2); 1.06-1.51; p = 0.009). OLD given to infants below 2 years were not associated with more frequent AE. CONCLUSIONS: Ondansetron-loading doses of 16 mg/m(2) (top, 24 mg) i.v. seem to be safe in infants, children, and adolescents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities 1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT) on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10\% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70\% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Previous studies on the influence of torsion and combined torsion-compression loading revealed a positive effect on the cell viability when a repetitive short-term torsion was applied at a physiological magnitude to intervertebral disc organ culture.1 However, after an extended period (8 hours) of combined torsion-compression loading, substantial cell death was detected in the nucleus pulposus (NP).2 In this follow-up study, we aimed to investigate the relationship, if any, between the duration of torsion applied to the intervertebral disc (IVD) and the level of NP cell viability. Materials and Methods Bovine caudal discs were harvested and cultured in a custom-built multiaxis dynamic loading bioreactor.2 Torsion (± 2 degrees) was applied to the samples at a frequency of 0.2 Hz. Torsion was applied for durations of 0, 1, 4, and 8 h/d, repeated over 7 days. After the last day of loading, disc tissue was dissected for analysis of cell viability and gene expression. Results Disc NP cell viability remained above 85% after torsional loading for 0, 1, or 4 h/d. Viability was statistical significantly reduced to below 70% when torsion was applied for 8 h/d (p = 0.03) (Table 1). The daily duration of torsional loading did not affect the AF cell viability (> 80% for all loading durations). The trend of collagen 2 gene upregulation and matrix metalloproteases 13 downregulation with an increasing duration of torsion was observed in both NP and AF (Fig. 1).Conclusion We have demonstrated that an extended duration of torsion could inhibit the survival of NP cells within the IVD in organ culture. Acknowledgments Funds from the Orthopedic Department of the Insel University Hospital of Bern and a private donation from Prof. Dr. Paul Heini, Spine Surgeon, Sonnenhof Clinic Bern were received to support this work. Disclosure of Interest None declared References References 1 Chan SC, Ferguson SJ, Wuertz K, Gantenbein-Ritter B. Biological response of the intervertebral disc to repetitive short-term cyclic torsion. Spine 2011;36(24):2021–2030 2 Chan SC, Walser J, Käppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS ONE 2013;8(8):e72489

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.