3 resultados para shrink
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Grid (or sieve) therapy ("Gitter-" oder "Siebtherapie"), spatially fractionated kilo- and megavolt X-ray therapy, was invented in 1909 by Alban Köhler, a radiologist in Wiesbaden, Germany. He tested it on several patients before 1913 using approximately 60-70kV Hittorf-Crookes tubes. Köhler pushed the X-ray tube's lead-shielded housing against a stiff grid of 1 mm-square iron wires woven 3.0-3.5mm on center, taped tightly to the skin over a thin chamois. Numerous islets unshielded by iron in the pressure-blanched skin were irradiated with up to about 6 erythema doses (ED). The skin was then thoroughly cleansed, disinfected, and bandaged; delayed punctate necrosis healed in several weeks. Although grid therapy was disparaged or ignored until the 1930s, it has been used successfully since then to shrink bulky malignancies. Also, advanced cancers in rats and mice have been mitigated or ablated using Köhler's concept since the early 1990s by unidirectional or stereotactic exposure to an array of nearly parallel microplanar (25-75μm-wide) beams of very intense, moderately hard (median energy approximately 100 keV) synchrotron-generated X rays spaced 0.1-0.4mm on center. Such beams maintain sharp edges at high doses well beneath the skin yet confer little toxicity. They could palliate some otherwise intractable malignancies, perhaps in young children too, with tolerable sequelae. There are plans for such studies in larger animals.
Resumo:
In this paper, we simulate numerically the catastrophic disruption of a large asteroid as a result of a collision with a smaller projectile and the subsequent reaccumulation of fragments as a result of their mutual gravitational attractions. We then investigate the original location within the parent body of the small pieces that eventually reaccumulate to form the largest offspring of the disruption as a function of the internal structure of the parent body. We consider four cases that may represent the internal structure of such a body (whose diameter is fixed at 250 km) in various early stages of the Solar System evolution: fully molten, half molten (i.e., a 26 km-deep outer layer of melt containing half of the mass), solid except a thin molten layer (8 km thick) centered at 10 km depth, and fully solid. The solid material has properties of basalt. We then focus on the three largest offspring that have enough reaccumulated pieces to consider. Our results indicate that the particles that eventually reaccumulate to form the largest reaccumulated bodies retain a memory of their original locations in the parent body. Most particles in each reaccumulated body are clustered from the same original region, even if their reaccumulations take place far away. The extent of the original region varies considerably depending on the internal structure of the parent. It seems to shrink with the solidity of the body. The fraction of particles coming from a given depth is computed for the four cases, which can give constraints on the internal structure of parent bodies of some meteorites. As one example, we consider the ureilites, which in some petrogenetic models are inferred to have formed at particular depths within their parent body. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Using the results from the NCAR CSM1.4-coupled global carbon cycle– climate model under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios SRES A2 and B1, we estimated the effects of both global warming and ocean acidification on the future habitats of corals in the seas around Japan during this century. As shown by Yara et al. (Biogeosciences 9:4955–4968,2012), under the high-CO₂-emission scenario (SRES A2), coral habitats will be sandwiched and narrowed between the northern region, where the saturation state of the carbonate mineral aragonite (Ωarag) decreases, and the southern region, where coral bleaching occurs. We found that under the low-emission scenario SRES B1, the coral habitats will also shrink in the northern region by the reduced Ωarag but to a lesser extent than under SRES A2, and in contrast to SRES A2, no bleaching will occur in the southern region. Therefore, coral habitats in the southern region are expected to be largely unaffected by ocean acidification or surface warming under the low-emission scenario. Our results show that potential future coral habitats depend strongly on CO₂ emissions and emphasize the importance of reducing CO₂ emissions to prevent negative impacts on coral habitats.