3 resultados para separation from the attachment figure
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Interstellar Boundary Explorer (IBEX) observes the IBEX ribbon, which stretches across much of the sky observed in energetic neutral atoms (ENAs). The ribbon covers a narrow (~20°-50°) region that is believed to be roughly perpendicular to the interstellar magnetic field. Superimposed on the IBEX ribbon is the globally distributed flux that is controlled by the processes and properties of the heliosheath. This is a second study that utilizes a previously developed technique to separate ENA emissions in the ribbon from the globally distributed flux. A transparency mask is applied over the ribbon and regions of high emissions. We then solve for the globally distributed flux using an interpolation scheme. Previously, ribbon separation techniques were applied to the first year of IBEX-Hi data at and above 0.71 keV. Here we extend the separation analysis down to 0.2 keV and to five years of IBEX data enabling first maps of the ribbon and the globally distributed flux across the full sky of ENA emissions. Our analysis shows the broadening of the ribbon peak at energies below 0.71 keV and demonstrates the apparent deformation of the ribbon in the nose and heliotail. We show global asymmetries of the heliosheath, including both deflection of the heliotail and differing widths of the lobes, in context of the direction, draping, and compression of the heliospheric magnetic field. We discuss implications of the ribbon maps for the wide array of concepts that attempt to explain the ribbon's origin. Thus, we present the five-year separation of the IBEX ribbon from the globally distributed flux in preparation for a formal IBEX data release of ribbon and globally distributed flux maps to the heliophysics community.
Resumo:
The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that $v_2(\pi^+) < v_2(\pi^-)$ (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced $v_2$ splitting and its centrality dependence. We compare the results with the available experimental data.
Resumo:
The anisotropy of magnetic susceptibility (AMS) has been measured with low- and high-field methods, in deformed carbonate rocks along the Morcles nappe shear zone (Helvetic Alps). High-field measurements at room temperature and 77 K enable the separation of the ferrimagnetic, paramagnetic and diamagnetic anisotropy. The ferrimagnetic sub-fabric is generally insignificant in these rocks, contributing less than 10% to the total AMS. AMS results for both the separated diamagnetic and paramagnetic subfabrics are consistent with the regional shear movement in the late-stage formation of the Helvetic nappes, as seen in the Morcles nappe, whose inverted limb indicate shear displacement towards the northwest. The diamagnetic anisotropy correlates well quantitatively with the calculated magnetic anisotropy based on the calcite texture. There is a gradational change in the degree of anisotropy related to the strain gradient along the shear zone. A more complex magnetic fabric, resulting from partial overprinting due to displacement along the Simplon–Rhône fault, is evident at one site near the root zone of the nappe. Partial overprinting of the magnetic fabric appears to have taken place in two locations farther up the shear zone as well. This late phase deformation is associated with recent exhumation of the Mont Blanc and Belledonne external massifs and orogen parallel extension, and is reflected by the AMS. Rocks with bulk susceptibility ∼0 SI, and simple mineral compositions are ideal for low temperature high-field torque, as this method helps to enhance the paramagnetic susceptibility and anisotropy, which may otherwise be masked by the mixed magnetic contributions of the composite magnetic fabric.