44 resultados para sensor network devices

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With research on Wireless Sensor Networks (WSNs) becoming more and more mature in the past five years, researchers from universities all over the world have set up testbeds of wireless sensor networks, in most cases to test and evaluate the real-world behavior of developed WSN protocol mechanisms. Although these testbeds differ heavily in the employed sensor node types and the general architectural set up, they all have similar requirements with respect to management and scheduling functionalities: as every shared resource, a testbed requires a notion of users, resource reservation features, support for reprogramming and reconfiguration of the nodes, provisions to debug and remotely reset sensor nodes in case of node failures, as well as a solution for collecting and storing experimental data. The TARWIS management architecture presented in this paper targets at providing these functionalities independent from node type and node operating system. TARWIS has been designed as a re-usable management solution for research and/or educational oriented research testbeds of wireless sensor networks, relieving researchers intending to deploy a testbed from the burden to implement their own scheduling and testbed management solutions from scratch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the energy-efficiency and service characteristics of a recently developed energy-efficient MAC protocol for wireless sensor networks in simulation and on a real sensor hardware testbed. This opportunity is seized to illustrate how simulation models can be verified by cross-comparing simulation results with real-world experiment results. The paper demonstrates that by careful calibration of simulation model parameters, the inevitable gap between simulation models and real-world conditions can be reduced. It concludes with guidelines for a methodology for model calibration and validation of sensor network simulation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intention of an authentication and authorization infrastructure (AAI) is to simplify and unify access to different web resources. With a single login, a user can access web applications at multiple organizations. The Shibboleth authentication and authorization infrastructure is a standards-based, open source software package for web single sign-on (SSO) across or within organizational boundaries. It allows service providers to make fine-grained authorization decisions for individual access of protected online resources. The Shibboleth system is a widely used AAI, but only supports protection of browser-based web resources. We have implemented a Shibboleth AAI extension to protect web services using Simple Object Access Protocol (SOAP). Besides user authentication for browser-based web resources, this extension also provides user and machine authentication for web service-based resources. Although implemented for a Shibboleth AAI, the architecture can be easily adapted to other AAIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we will give a detailed tutorial instruction about how to use the Mobile Multi-Media Wireless Sensor Networks (M3WSN) simulation framework. The M3WSN framework has been published as a scientific paper in the 6th International Workshop on OMNeT++ (2013) [1]. M3WSN framework enables the multimedia transmission of real video se- quence. Therefore, a set of multimedia algorithms, protocols, and services can be evaluated by using QoE metrics. Moreover, key video-related information, such as frame types, GoP length and intra-frame dependency can be used for creating new assessment and optimization solutions. To support mobility, M3WSN utilizes different mobility traces to enable the understanding of how the network behaves under mobile situations. This tutorial will cover how to install and configure the M3WSN framework, setting and running the experiments, creating mobility and video traces, and how to evaluate the performance of different protocols. The tutorial will be given in an environment of Ubuntu 12.04 LTS and OMNeT++ 4.2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the appearance of downsized and simplified TCP/IP stacks, single nodes from Wireless Sensor Networks (WSNs) have become directly accessible from the Internet with commonly used networking tools and applications (e.g., Telnet or SMTP). However, TCP has been shown to perform poorly in wireless networks, especially across multiple wireless hops. This paper examines TCP performance optimizations based on distributed caching and local retransmission strategies of intermediate nodes in a TCP connection, and proposes extended techniques to these strategies. The paper studies the impact of different radio duty-cycling MAC protocols on the end-to-end TCP performance when using the proposed TCP optimization strategies in an extensive experimental evaluation on a real-world sensor network testbed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To interconnect a wireless sensor network (WSN) to the Internet, we propose to use TCP/IP as the standard protocol for all network entities. We present a cross layer designed communication architecture, which contains a MAC protocol, IP, a new protocol called Hop-to-Hop Reliability (H2HR) protocol, and the TCP Support for Sensor Nodes (TSS) protocol. The MAC protocol implements the MAC layer of beacon-less personal area networks (PANs) as defined in IEEE 802.15.4. H2HR implements hop-to-hop reliability mechanisms. Two acknowledgment mechanisms, explicit and implicit ACK are supported. TSS optimizes using TCP in WSNs by implementing local retransmission of TCP data packets, local TCP ACK regeneration, aggressive TCP ACK recovery, congestion and flow control algorithms. We show that H2HR increases the performance of UDP, TCP, and RMST in WSNs significantly. The throughput is increased and the packet loss ratio is decreased. As a result, WSNs can be operated and managed using TCP/IP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development and evaluation of new algorithms and protocols for Wireless Multimedia Sensor Networks (WMSNs) are usually supported by means of a discrete event network simulator, where OMNeT++ is one of the most important ones. However, experiments involving multimedia transmission, video flows with different characteristics, genres, group of pictures lengths, and coding techniques must be evaluated based also on Quality of Experience (QoE) metrics to reflect the user's perception. Such experiments require the evaluation of video-related information, i.e., frame type, received/lost, delay, jitter, decoding errors, as well as inter and intra-frame dependency of received/distorted videos. However, existing OMNeT++ frameworks for WMSNs do not support video transmissions with QoE-awareness, neither a large set of mobility traces to enable evaluations under different multimedia/mobile situations. In this paper, we propose a Mobile MultiMedia Wireless Sensor Network OMNeT++ framework (M3WSN) to support transmission, control and evaluation of real video sequences in mobile WMSNs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.