39 resultados para semi-automatic method
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To develop a novel application of a tool for semi-automatic volume segmentation and adapt it for analysis of fetal cardiac cavities and vessels from heart volume datasets. METHODS: We studied retrospectively virtual cardiac volume cycles obtained with spatiotemporal image correlation (STIC) from six fetuses with postnatally confirmed diagnoses: four with normal hearts between 19 and 29 completed gestational weeks, one with d-transposition of the great arteries and one with hypoplastic left heart syndrome. The volumes were analyzed offline using a commercially available segmentation algorithm designed for ovarian folliculometry. Using this software, individual 'cavities' in a static volume are selected and assigned individual colors in cross-sections and in 3D-rendered views, and their dimensions (diameters and volumes) can be calculated. RESULTS: Individual segments of fetal cardiac cavities could be separated, adjacent segments merged and the resulting electronic casts studied in their spatial context. Volume measurements could also be performed. Exemplary images and interactive videoclips showing the segmented digital casts were generated. CONCLUSION: The approach presented here is an important step towards an automated fetal volume echocardiogram. It has the potential both to help in obtaining a correct structural diagnosis, and to generate exemplary visual displays of cardiac anatomy in normal and structurally abnormal cases for consultation and teaching.
Resumo:
A fast and automatic method for radiocarbon analysis of aerosol samples is presented. This type of analysis requires high number of sample measurements of low carbon masses, but accepts precisions lower than for carbon dating analysis. The method is based on online Trapping CO2 and coupling an elemental analyzer with a MICADAS AMS by means of a gas interface. It gives similar results to a previously validated reference method for the same set of samples. This method is fast and automatic and typically provides uncertainties of 1.5–5% for representative aerosol samples. It proves to be robust and reliable and allows for overnight and unattended measurements. A constant and cross contamination correction is included, which indicates a constant contamination of 1.4 ± 0.2 μg C with 70 ± 7 pMC and a cross contamination of (0.2 ± 0.1)% from the previous sample. A Real-time online coupling version of the method was also investigated. It shows promising results for standard materials with slightly higher uncertainties than the Trapping online approach.
Resumo:
Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We present a validation study of a software able to perform automatic bone measurements used to automatically assess the distal femur sizes across a databank. 170 distal femur surfaces were reconstructed from CT data and measured manually using a size measure protocol taking into account the transepicondyler distance (A), anterior-posterior distance in medial condyle (B) and anterior-posterior distance in lateral condyle (C). Intra- and inter-observer studies were conducted and regarded as ground truth measurements. Manual and automatic measures were compared. For the automatic measurements, the correlation coefficients between observer one and automatic method, were of 0.99 for A measure and 0.96 for B and C measures. The average time needed to perform the measurements was of 16 h for both manual measurements, and of 3 min for the automatic method. Results demonstrate the high reliability and, most importantly, high repeatability of the proposed approach, and considerable speed-up on the planning.
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.
Resumo:
Automatic scan planning for magnetic resonance imaging of the knee aims at defining an oriented bounding box around the knee joint from sparse scout images in order to choose the optimal field of view for the diagnostic images and limit acquisition time. We propose a fast and fully automatic method to perform this task based on the standard clinical scout imaging protocol. The method is based on sequential Chamfer matching of 2D scout feature images with a three-dimensional mean model of femur and tibia. Subsequently, the joint plane separating femur and tibia, which contains both menisci, can be automatically detected using an information-augmented active shape model on the diagnostic images. This can assist the clinicians in quickly defining slices with standardized and reproducible orientation, thus increasing diagnostic accuracy and also comparability of serial examinations. The method has been evaluated on 42 knee MR images. It has the potential to be incorporated into existing systems because it does not change the current acquisition protocol.
Resumo:
Recently developed computer applications provide tools for planning cranio-maxillofacial interventions based on 3-dimensional (3D) virtual models of the patient's skull obtained from computed-tomography (CT) scans. Precise knowledge of the location of the mid-facial plane is important for the assessment of deformities and for planning reconstructive procedures. In this work, a new method is presented to automatically compute the mid-facial plane on the basis of a surface model of the facial skeleton obtained from CT. The method matches homologous surface areas selected by the user on the left and right facial side using an iterative closest point optimization. The symmetry plane which best approximates this matching transformation is then computed. This new automatic method was evaluated in an experimental study. The study included experienced and inexperienced clinicians defining the symmetry plane by a selection of landmarks. This manual definition was systematically compared with the definition resulting from the new automatic method: Quality of the symmetry planes was evaluated by their ability to match homologous areas of the face. Results show that the new automatic method is reliable and leads to significantly higher accuracy than the manual method when performed by inexperienced clinicians. In addition, the method performs equally well in difficult trauma situations, where key landmarks are unreliable or absent.
Resumo:
Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.
Resumo:
MRSI grids frequently show spectra with poor quality, mainly because of the high sensitivity of MRS to field inhomogeneities. These poor quality spectra are prone to quantification and/or interpretation errors that can have a significant impact on the clinical use of spectroscopic data. Therefore, quality control of the spectra should always precede their clinical use. When performed manually, quality assessment of MRSI spectra is not only a tedious and time-consuming task, but is also affected by human subjectivity. Consequently, automatic, fast and reliable methods for spectral quality assessment are of utmost interest. In this article, we present a new random forest-based method for automatic quality assessment of (1) H MRSI brain spectra, which uses a new set of MRS signal features. The random forest classifier was trained on spectra from 40 MRSI grids that were classified as acceptable or non-acceptable by two expert spectroscopists. To account for the effects of intra-rater reliability, each spectrum was rated for quality three times by each rater. The automatic method classified these spectra with an area under the curve (AUC) of 0.976. Furthermore, in the subset of spectra containing only the cases that were classified every time in the same way by the spectroscopists, an AUC of 0.998 was obtained. Feature importance for the classification was also evaluated. Frequency domain skewness and kurtosis, as well as time domain signal-to-noise ratios (SNRs) in the ranges 50-75 ms and 75-100 ms, were the most important features. Given that the method is able to assess a whole MRSI grid faster than a spectroscopist (approximately 3 s versus approximately 3 min), and without loss of accuracy (agreement between classifier trained with just one session and any of the other labelling sessions, 89.88%; agreement between any two labelling sessions, 89.03%), the authors suggest its implementation in the clinical routine. The method presented in this article was implemented in jMRUI's SpectrIm plugin. Copyright © 2016 John Wiley & Sons, Ltd.
Resumo:
BACKGROUND AND PURPOSE In clinical diagnosis, medical image segmentation plays a key role in the analysis of pathological regions. Despite advances in automatic and semi-automatic segmentation techniques, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a lower number of interactions, and a user-independent solution to reduce the time frame between image acquisition and diagnosis. METHODS We present a new interactive method for correcting image segmentations. Our method provides 3D shape corrections through 2D interactions. This approach enables an intuitive and natural corrections of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle and knee joint segmentations from MR images. RESULTS Experimental results show that full segmentation corrections could be performed within an average correction time of 5.5±3.3 minutes and an average of 56.5±33.1 user interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.02 for both anatomies. In addition, for users with different levels of expertise, our method yields a correction time and number of interaction decrease from 38±19.2 minutes to 6.4±4.3 minutes, and 339±157.1 to 67.7±39.6 interactions, respectively.
Resumo:
Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an efficient selection. We present an automatic method based on registration of femur bones to overcome this limitation. We introduce a new regularization term for the log-domain demons algorithm. This term replaces the standard Gaussian smoothing with a femur specific polyaffine model. The polyaffine femur model is constructed with two affine (femoral head and condyles) and one rigid (shaft) transformation. Our main contribution in this paper is to show that the demons algorithm can be improved in specific cases with an appropriate model. We are not trying to find the most optimal polyaffine model of the femur, but the simplest model with a minimal number of parameters. There is no need to optimize for different number of regions, boundaries and choice of weights, since this fine tuning will be done automatically by a final demons relaxation step with Gaussian smoothing. The newly developed synthesis approach provides a clear anatomically motivated modeling contribution through the specific three component transformation model, and clearly shows a performance improvement (in terms of anatomical meaningful correspondences) on 146 CT images of femurs compared to a standard multiresolution demons. In addition, this simple model improves the robustness of the demons while preserving its accuracy. The ground truth are manual measurements performed by medical experts.
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.
Resumo:
Plutonium is present in the environment as a consequence of atmospheric nuclear tests, nuclear weapons production and industrial releases over the past 50 years. To study temporal trends, a high resolution Pu record was obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (Monte Rosa, 4450 m a.s.l.), dating from 1945 to 1990. The 239Pu signal was recorded directly, without decontamination or preconcentration steps, using an Inductively Coupled Plasma - Sector Field Mass Spectrometer (ICP-SFMS) equipped with an high efficiency sample introduction system, thus requiring much less sample preparation than previously reported methods. The 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak lasted from 1954/55 to 1958 and was caused by the first testing period reaching a maximum in 1958. Despite a temporary halt of testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak due to long atmospheric residence times. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the signing of the "Limited Test Ban Treaty" between USA and USSR in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975) is characterized by irregular Pu concentrations with smaller peaks (about 20-30% of the 1964 peak) which might be related to the deposition of Saharan dust contaminated by the French nuclear tests of the 1960s. The data presented are in very good agreement with Pu profiles previously obtained from the Col du Dome ice core (by multi-collector ICP-MS) and Belukha ice core (by Accelerator Mass Spectrometry, AMS). Although a semi-quantitative method was employed here, the results are quantitatively comparable to previously published results.
Resumo:
A new system for computer-aided corrective surgery of the jaws has been developed and introduced clinically. It combines three-dimensional (3-D) surgical planning with conventional dental occlusion planning. The developed software allows simulating the surgical correction on virtual 3-D models of the facial skeleton generated from computed tomography (CT) scans. Surgery planning and simulation include dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and segment repositioning. By coupling the software with a tracking system and with the help of a special registration procedure, we are able to acquire dental occlusion plans from plaster model mounts. Upon completion of the surgical plan, the setup is used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with the help of a display showing jaw positions and 3-D positioning guides updated in real time during the surgical procedure. The proposed approach offers the advantages of 3-D visualization and tracking technology without sacrificing long-proven cast-based techniques for dental occlusion evaluation. The system has been applied on one patient. Throughout this procedure, we have experienced improved assessment of pathology, increased precision, and augmented control.
Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts
Resumo:
In spite of the facts that magnetic resonance spectroscopy (MRS) is applied as clinical tool in non-specialized institutions and that semi-automatic acquisition and processing tools can be used to produce quantitative information from MRS exams without expert information, issues of spectral quality and quality assessment are neglected in the literature of MR spectroscopy. Even worse, there is no consensus among experts on concepts or detailed criteria of quality assessment for MR spectra. Furthermore, artifacts are not at all conspicuous in MRS and can easily be taken for true, interpretable features. This article aims to increase interest in issues of spectral quality and quality assessment, to start a larger debate on generally accepted criteria that spectra must fulfil to be clinically and scientifically acceptable, and to provide a sample gallery of artifacts, which can be used to raise awareness for potential pitfalls in MRS.