17 resultados para seeding
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
AIMS AND BACKGROUND Tumor progression due to seeding of tumor cells after definitive treatment for squamous cell carcinomas of the head and neck is an uncommon condition that can considerably worsen the outcome of patients with head and neck cancer. METHODS AND STUDY DESIGN We report two cases of recurrence due to neoplastic seeding from oropharyngeal and oral cancer, respectively. We performed a literature review with MEDLINE as the main search engine. RESULTS Seeding was found to occur most often in tracheotomy scars and gastrostomy sites. The oral cavity, hypopharynx and oropharynx were the primary sites in most cases, and advanced tumor stage seemed to be a risk factor for seeding. Treatment options include salvage surgery, which requires thorough resections, radiotherapy when possible, and palliative management. The prognosis of such events is poor. CONCLUSION Although neoplastic seeding is a well-known phenomenon in cancer surgery, many questions remain unanswered, especially regarding preventive measures and management strategies.
Resumo:
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.
Resumo:
As opposed to culture on standard tissue-treated plastic, cell culture on three-dimensional scaffolds impedes additional challenges with respect to substrate preparation, cell seeding, culture maintenance, and analysis. We herewith present a general route for the culture of primary cells, differentiated cells, or stem cells on plasma-coated, electrospun scaffolds. We describe a method to prepare and fix the scaffolds in culture wells and discuss a convenient method for cell seeding and subsequent analysis by scanning electron microscopy or immunohistology.
Resumo:
Intramyocardial transplantation of skeletal myoblasts augments postinfarction cardiac function. However, poor survival of injected cells limits this therapy. It is hypothesized that implantation of myoblast-based scaffolds would result in greater cell survival. Rat skeletal myoblasts were seeded on highly porous polyurethane (PU) scaffolds (7.5 x 7.5 x 2.0 mm). The effect of several scaffold pretreatments, initial cell densities, and culture periods was tested by DNA-based cell count and viability assessment. Seeded PU scaffolds were implanted on infarcted hearts and immunohistology was performed 4 weeks later. Precoating with laminin allowed the most favorable cell attachment. An initial inoculation with 5 x 10(6) cells followed by a 15-day culture period resulted in optimal myoblast proliferation. Four weeks after their implantation in rats, numerous myoblasts were found throughout the seeded patches although no sign of differentiation could be observed. This myoblast seeding technique on PU allows transfer of a large number of living myoblasts to a damaged myocardium.
Resumo:
PURPOSE: The aim of this study was to assess the outcome of patients with primary spinal myxopapillary ependymoma (MPE). MATERIALS AND METHODS: Data from a series of 85 (35 females, 50 males) patients with spinal MPE were collected in this retrospective multicenter study. Thirty-eight (45%) underwent surgery only and 47 (55%) received postoperative radiotherapy (RT). Median administered radiation dose was 50.4 Gy (range, 22.2-59.4). Median follow-up of the surviving patients was 60.0 months (range, 0.2-316.6). RESULTS: The 5-year progression-free survival (PFS) was 50.4% and 74.8% for surgery only and surgery with postoperative low- (<50.4 Gy) or high-dose (>or=50.4 Gy) RT, respectively. Treatment failure was observed in 24 (28%) patients. Fifteen patients presented treatment failure at the primary site only, whereas 2 and 1 patients presented with brain and distant spinal failure only. Three and 2 patients with local failure presented with concomitant spinal distant seeding and brain failure, respectively. One patient failed simultaneously in the brain and spine. Age greater than 36 years (p = 0.01), absence of neurologic symptoms at diagnosis (p = 0.01), tumor size >or=25 mm (p = 0.04), and postoperative high-dose RT (p = 0.05) were variables predictive of improved PFS on univariate analysis. In multivariate analysis, only postoperative high-dose RT was independent predictors of PFS (p = 0.04). CONCLUSIONS: The observed pattern of failure was mainly local, but one fifth of the patients presented with a concomitant spinal or brain component. Postoperative high-dose RT appears to significantly reduce the rate of tumor progression.
Resumo:
Within the scope of a comprehensive assessment of the degree of soil erosion in Switzerland, common methods have been used in the past including test plot measurements, artificial rainfall simulation, and erosion modelling. In addition, mapping guidelines for all visible erosion features have been developed since the 1970s and are being successfully applied in many research and soil conservation projects. Erosion damage has been continuously mapped over a period of 9 years in a test region in the central Bernese plateau. In 2005, two additional study areas were added. The present paper assesses the data gathered and provides a comparison of the three study areas within a period of one year (from October 2005 to October 2006), focusing on the on-site impacts of soil erosion. During this period, about 11 erosive rainfall events occurred. Average soil loss rates mapped at each study site amounted to 0.7 t ha-1, 1.2 t ha-1 and 2.3 t ha-1, respectively. About one fourth of the total arable land showed visible erosion damage. Maximum soil losses of about 70 t ha-1 occurred on individual farm plots. Average soil erosion patterns are widely used to underline the severity of an erosion problem (e.g. impacts on water bodies). But since severe rainfall events, wheel tracks, headlands, and other “singularities” often cause high erosion rates, analysis of extreme erosion patterns such as maximum values led to a more differentiated understanding and appropriate conclusions for planning and design of soil protection measures. The study contains an assessment of soil erosion in Switzerland, emphasizing questions about extent, frequency and severity. At the same time, the effects of different types of land management are investigated in the field, aiming at the development of meaningful impact indicators of (un-)sustainable agriculture/soil erosion risk as well as the validation of erosion models. The results illustrate that conservation agriculture including no-till, strip tillage and in-mulch seeding plays an essential role in reducing soil loss as compared to conventional tillage.
Resumo:
BACKGROUND Preclinical and clinical studies suggest that a combination of enamel matrix derivative (EMD) with demineralized freeze-dried bone allograft (DFDBA) may improve periodontal wound healing and regeneration. To date, no single study has characterized the effects of this combination on in vitro cell behavior. The aim of this study is to test the ability of EMD to adsorb to the surface of DFDBA particles and determine the effect of EMD coating on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. METHODS DFDBA particles were precoated with EMD or human blood and analyzed for protein adsorption patterns via scanning electron microscopy. Cell attachment and proliferation were quantified using a commercial assay. Cell differentiation was analyzed using real-time polymerase chain reaction for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen 1α1, and mineralization was assessed using alizarinred staining. RESULTS Analysis of cell attachment revealed no significant differences among control, blood-coated, and EMD-coated DFDBA particles. EMD significantly increased cell proliferation at 3 and 5 days after seeding for both osteoblasts and PDL cells compared to control and blood-coated samples. Moreover, there were significantly higher messenger ribonucleic acid levels of osteogenic differentiation markers, including collagen 1α1, alkaline phosphatase, and osteocalcin, in osteoblasts and PDL cells cultured on EMD-coated DFDBA particles at 3, 7, and 14 days. CONCLUSION The results suggest that the addition of EMD to DFDBA particles may influence periodontal regeneration by stimulating PDL cell and osteoblast proliferation and differentiation.
Resumo:
Lumbar discectomy is the surgical procedure most frequently performed for patients suffering from low back pain and sciatica. Disc herniation as a consequence of degenerative or traumatic processes is commonly encountered as the underlying cause for the painful condition. While discectomy provides favourable outcome in a majority of cases, there are conditions where unmet requirements exist in terms of treatment, such as large disc protrusions with minimal disc degeneration; in these cases, the high rate of recurrent disc herniation after discectomy is a prevalent problem. An effective biological annular repair could improve the surgical outcome in patients with contained disc herniations but otherwise minor degenerative changes. An attractive approach is a tissue-engineered implant that will enable/stimulate the repair of the ruptured annulus. The strategy is to develop three-dimensional scaffolds and activate them by seeding cells or by incorporating molecular signals that enable new matrix synthesis at the defect site, while the biomaterial provides immediate closure of the defect and maintains the mechanical properties of the disc. This review is structured into (1) introduction, (2) clinical problems, current treatment options and needs, (3) biomechanical demands, (4) cellular and extracellular components, (5) biomaterials for delivery, scaffolding and support, (6) pre-clinical models for evaluation of newly developed cell- and material-based therapies, and (7) conclusions. This article highlights that an interdisciplinary approach is necessary for successful development of new clinical methods for annulus fibrosus repair. This will benefit from a close collaboration between research groups with expertise in all areas addressed in this review.
Resumo:
Poly(ɛ)caprolactone scaffolds have been electrospun directly into an auricular shaped conductive mould. Bovine chondrocytes were harvested from articular cartilage and seeded onto 16 of the produced scaffolds, which received either an ethanol (group A) or a plasma treatment (group B) for sterilisation before seeding. The seeded scaffolds were cultured for 3 weeks in vitro and analysed with regard to total DNA and GAG content as well as the expression of AGG, COL1, COL2, MMP3 and MMP13. Rapid cell proliferation and GAG accumulation was observed until week 2. However, total DNA and GAG content decreased again in week 3. qPCR data shows a slight increase in the expression of anabolic genes and a slight decrease for the catabolic genes, with a significant difference between the groups A and B only for COL2 and MMP13.
Resumo:
Fruiting is typically considered to massively burden the seasonal carbon budget of trees. The cost of reproduction has therefore been suggested as a proximate factor explaining observed mast-fruiting patterns. Here, we used a large-scale, continuous 13C labeling of mature, deciduous trees in a temperate Swiss forest to investigate to what extent fruit formation in three species with masting reproduction behavior (Carpinus betulus, Fagus sylvatica, Quercus petraea) relies on the import of stored carbon reserves. Using a free-air CO2 enrichment system, we exposed trees to 13C-depleted CO2 during 8 consecutive years. By the end of this experiment, carbon reserve pools had significantly lower δ13C values compared to control trees. δ13C analysis of new biomass during the first season after termination of the CO2 enrichment allowed us to distinguish the sources of built-in carbon (old carbon reserves vs. current assimilates). Flowers and expanding leaves carried a significant 13C label from old carbon stores. In contrast, fruits and vegetative infructescence tissues were exclusively produced from current, unlabeled photoassimilates in all three species, including F. sylvatica, which had a strong masting season. Analyses of δ13C in purified starch from xylem of fruit-bearing shoots revealed a complete turn-over of starch during the season, likely due to its usage for bud break. This study is the first to directly demonstrate that fruiting is independent from old carbon reserves in masting trees, with significant implications for mechanistic models that explain mast seeding.
Resumo:
Introduction: Anterior cruciate ligament (ACL) injuries are very common; in Germany incidence of ACL ruptures is estimated at 32 per 100 000 in the general population and in the sports community this rate more than doubles. Current gold standard for anterior cruciate lig- ament repair is reconstruction using an autograft [1]. However, this approach has shown some limitations. A new method has been her- alded by the Knee Team at the Bern University Hospital (Inselspital) and the Sonnenhof clinic called Dynamic Intraligamentary Stabilization (DIS), which keeps ACL remnants in place in order to promote biologi- cal healing and makes use of a dynamic screw system [2]. The aim of this study was to investigate the cytocompatibility of collagen patches in combination with DIS to support regeneration of the ACL. The spe- cific hypothesis we tested was whether MSCs would differentiate towards TCs in co-culture. Materials and methods: Primary Tenocytes (TCs) and human bone marrow derived mesenchymal stem cells (MSCs) were harvested from ACL removed during knee prothesis or from bone marrow aspirations (Ethical Permit 187/10). Cells were seeded on two types of three dimensional carriers currently approved for cartilage repair, Novocart (NC, B. Brown) and Chondro-Gide (CG, Geistlich). These scaffolds comprise collagen structures with interconnecting pores originally developed for seeding of chondrocytes in the case of CG. ~40k cells were seeded on punched zylindrical cores of 8 mm in Ø and cultured on CG or NC patches for up to 7 days. The cells were either cultured as TC only, MSC only or co-cultured in a 1:1 mix on the scaffolds and on both sides of culture inserts (PET, high density pore Ø 0.4 mm, BD, Fal- con) with cell-cell contact. We monitored DNA content, GAG and HOP-content, tracked the cells using DIL and DIO fluorescent dyes (Molecular Probes, Life technologies) and confocal laser scanning and SEM microscopy as well as RT-PCR of tenocyte specific markers (i.e. col 1 and 3, TNC, TNMD, SCXA&B, and markers of dedifferentiation ACAN, col2, MMP3, MMP13). Finally, H&E stain was interpreted on cryosections and SEM images of cells on the scaffold were taken. Results: ThecLSMimagesshowedcellproliferationoverthe7dayson both matrices, however, on CG there were much fewer MSCs attached than on NC. SEM images showed a roundish chondrocyte-like pheno- type of cells on CG whereas on NC the phenotype was more teno- cyte-like (Fig. 1). Gene expression of both, MSC and TC seem to confirm a more favorable environment in 3D for both patches rather than monolayer control.
Resumo:
Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.
Resumo:
OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.
Resumo:
OBJECTIVES Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. MATERIALS AND METHODS The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. RESULTS The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. CONCLUSION The results from the present study demonstrate that the in vitro conditions largely influence cell behavior of osteoblasts seeded on bone grafts and in vitro testing. CLINICAL RELEVANCE These results also illustrate the necessity for careful selection of bone graft seeding density to optimize in vitro testing and provide the clinician with a more accurate description of the osteopromotive potential of bone grafts.