3 resultados para seasonal occurrence
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Clustering ventricular arrhythmias are the consequence of acute ventricular electrical instability and represent a challenge in the management of the growing number of patients with an implantable cardioverter-defibrillator (ICD). Triggering factors can rarely be identified. OBJECTIVES: Several studies have revealed seasonal variations in the frequency of cardiovascular events and life-threatening arrhythmias, and we sought to establish whether seasonal factors may exacerbate ventricular electrical instability leading to arrhythmia clusters and electrical storm. METHODS: Two hundred and fourteen consecutive defibrillator recipients were followed-up during 3.3 +/- 2.2 years. Arrhythmia cluster was defined as the occurrence of three or more arrhythmic events triggering appropriate defibrillator therapies within 2 weeks. Time intervals between two clusters were calculated for each month and each season, and were compared using Kruskal-Wallis test and Wilcoxon-Mann-Whitney test with Bonferroni adjustment. RESULTS: During a follow-up of 698 patient years, 98 arrhythmia clusters were observed in 51 patients; clustering ventricular arrhythmias were associated with temporal variables; they occurred more frequently in the winter and spring months than during the summer and fall. Accordingly, the time intervals between two clusters were significantly shorter during winter and spring (median and 95% CI): winter 16 (5-19), spring 11.5 (7-25), summer 34.5 (15-55), fall 50.5 (19-65), P = 0.0041. CONCLUSION: There are important seasonal variations in the incidence of arrhythmia clusters in ICD recipients. Whether these variations are related to environmental factors, change in physical activity, or psychological factors requires further study.
Resumo:
Knowledge of past natural flood variability and controlling climate factors is of high value since it can be useful to refine projections of the future flood behavior under climate warming. In this context, we present a seasonally resolved 2000 year long flood frequency and intensity reconstruction from the southern Alpine slope (North Italy) using annually laminated (varved) lake sediments. Floods occurred predominantly during summer and autumn, whereas winter and spring events were rare. The all-season flood frequency and, particularly, the occurrence of summer events increased during solar minima, suggesting solar-induced circulation changes resembling negative conditions of the North Atlantic Oscillation as controlling atmospheric mechanism. Furthermore, the most extreme autumn events occurred during a period of warm Mediterranean sea surface temperature. Interpreting these results in regard to present climate change, our data set proposes for a warming scenario, a decrease in summer floods, but an increase in the intensity of autumn floods at the South-Alpine slope.
Resumo:
Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑ hydroxyl + carboxyl-OPAHs, Σnitro-PAHs and Σalkyl + parent-PAHs ranged between 5–22, 0.2–13, 0.3–7, and 7–387 ng m− 3, respectively, being markedly higher than in most western cities. This represented a range of 0.01–0.4% and 0.002–0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures.