36 resultados para seagrass ecosystems
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Software evolution research has focused mostly on analyzing the evolution of single software systems. However, it is rarely the case that a project exists as standalone, independent of others. Rather, projects exist in parallel within larger contexts in companies, research groups or even the open-source communities. We call these contexts software ecosystems, and on this paper we present The Small Project Observatory, a prototype tool which aims to support the analysis of project ecosystems through interactive visualization and exploration. We present a case-study of exploring an ecosystem using our tool, we describe about the architecture of the tool, and we distill the lessons learned during the tool-building experience.
Resumo:
Natural methane (CH4) emissions from wet ecosystems are an important part of today's global CH4 budget. Climate affects the exchange of CH4 between ecosystems and the atmosphere by influencing CH4 production, oxidation, and transport in the soil. The net CH4 exchange depends on ecosystem hydrology, soil and vegetation characteristics. Here, the LPJ-WHyMe global dynamical vegetation model is used to simulate global net CH4 emissions for different ecosystems: northern peatlands (45°–90° N), naturally inundated wetlands (60° S–45° N), rice agriculture and wet mineral soils. Mineral soils are a potential CH4 sink, but can also be a source with the direction of the net exchange depending on soil moisture content. The geographical and seasonal distributions are evaluated against multi-dimensional atmospheric inversions for 2003–2005, using two independent four-dimensional variational assimilation systems. The atmospheric inversions are constrained by the atmospheric CH4 observations of the SCIAMACHY satellite instrument and global surface networks. Compared to LPJ-WHyMe the inversions result in a~significant reduction in the emissions from northern peatlands and suggest that LPJ-WHyMe maximum annual emissions peak about one month late. The inversions do not put strong constraints on the division of sources between inundated wetlands and wet mineral soils in the tropics. Based on the inversion results we diagnose model parameters in LPJ-WHyMe and simulate the surface exchange of CH4 over the period 1990–2008. Over the whole period we infer an increase of global ecosystem CH4 emissions of +1.11 Tg CH4 yr−1, not considering potential additional changes in wetland extent. The increase in simulated CH4 emissions is attributed to enhanced soil respiration resulting from the observed rise in land temperature and in atmospheric carbon dioxide that were used as input. The long-term decline of the atmospheric CH4 growth rate from 1990 to 2006 cannot be fully explained with the simulated ecosystem emissions. However, these emissions show an increasing trend of +3.62 Tg CH4 yr−1 over 2005–2008 which can partly explain the renewed increase in atmospheric CH4 concentration during recent years.
Resumo:
Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The "Biocomplexity of Patterned Ground Ecosystems" project examined patterned-ground features (PGFs) in all five Arctic bioclimate subzones along an 1800-km trans-Arctic temperature gradient in northern Alaska and northwestern Canada. This paper provides an overview of the transect to illustrate the trends in climate, PGFs, vegetation, n-factors, soils, active-layer depth, and frost heave along the climate gradient. We emphasize the thermal effects of the vegetation and snow on the heat and water fluxes within patterned-ground systems. Four new modeling approaches build on the theme that vegetation controls microscale soil temperature differences between the centers and margins of the PGFs, and these in turn drive the movement of water, affect the formation of aggradation ice, promote differential soil heave, and regulate a host of system propel-ties that affect the ability of plants to colonize the centers of these features. We conclude with an examination of the possible effects of a climate wan-ning on patterned-ground ecosystems.