28 resultados para scattering-parameter measurement
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We report on a new measurement of the neutron beta-asymmetry parameter A with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1) from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)
Resumo:
A measurement of the total pp cross section at the LHC at √s = 7 TeV is presented. In a special run with high-β* beam optics, an integrated luminosity of 80 μb−1 was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t . The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the |t | range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to |t | →0, the total cross section, σtot(pp→X), is measured via the optical theorem to be: σtot(pp→X) = 95.35± 0.38 (stat.)± 1.25 (exp.)± 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to |t | → 0. In addition, the slope of the elastic cross section at small |t | is determined to be B = 19.73 ±0.14 (stat.) ±0.26 (syst.) GeV−2.
Resumo:
A measurement of the parity-violating decay asymmetry parameter, αb , and the helicity amplitudes for the decay Λ 0 b →J/ψ(μ + μ − )Λ 0 (pπ − ) is reported. The analysis is based on 1400 Λ 0 b and Λ ¯ 0 b baryons selected in 4.6 fb −1 of proton–proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the Λ 0 b and Λ ¯ 0 b samples under the assumption of CP conservation, the value of α b is measured to be 0.30±0.16(stat)±0.06(syst) . This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.
Resumo:
New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ 23 . Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10 20 protons on target, T2K has fit the energy-dependent ν μ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin 2 (θ 23 ) is 0.514 +0.055 −0.056 (0.511±0.055 ), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm 2 32 =(2.51±0.10)×10 −3 eV 2 /c 4 (inverted hierarchy: Δm 2 13 =(2.48±0.10)×10 −3 eV 2 /c 4 ). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.
Resumo:
CBV is a vital perfusion parameter in estimating the viability of brain parenchyma (eg, in cases of ischemic stroke or after interventional vessel occlusion). Recent technologic advances allow parenchymal CBV imaging tableside in the angiography suite just before, during, or after an interventional procedure. The aim of this work was to analyze our preliminary clinical experience with this new imaging tool in different neurovascular interventions.
Resumo:
In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.
Resumo:
PURPOSE: Computer-based feedback systems for assessing the quality of cardiopulmonary resuscitation (CPR) are widely used these days. Recordings usually involve compression and ventilation dependent variables. Thorax compression depth, sufficient decompression and correct hand position are displayed but interpreted independently of one another. We aimed to generate a parameter, which represents all the combined relevant parameters of compression to provide a rapid assessment of the quality of chest compression-the effective compression ratio (ECR). METHODS: The following parameters were used to determine the ECR: compression depth, correct hand position, correct decompression and the proportion of time used for chest compressions compared to the total time spent on CPR. Based on the ERC guidelines, we calculated that guideline compliant CPR (30:2) has a minimum ECR of 0.79. To calculate the ECR, we expanded the previously described software solution. In order to demonstrate the usefulness of the new ECR-parameter, we first performed a PubMed search for studies that included correct compression and no-flow time, after which we calculated the new parameter, the ECR. RESULTS: The PubMed search revealed 9 trials. Calculated ECR values ranged between 0.03 (for basic life support [BLS] study, two helpers, no feedback) and 0.67 (BLS with feedback from the 6th minute). CONCLUSION: ECR enables rapid, meaningful assessment of CPR and simplifies the comparability of studies as well as the individual performance of trainees. The structure of the software solution allows it to be easily adapted to any manikin, CPR feedback devices and different resuscitation guidelines (e.g. ILCOR, ERC).
Resumo:
Neurodegenerative diseases affect the cerebellum of numerous dog breeds. Although subjective, magnetic resonance (MR) imaging has been used to detect cerebellar atrophy in these diseases, but there are few data available on the normal size range of the cerebellum relative to other brain regions. The purpose of this study was to determine whether the size of the cerebellum maintains a consistent ratio with other brain regions in different ages and breeds of normal dogs and to define a measurement that can be used to identify cerebellar atrophy on MR images. Images from 52 normal and 13 dogs with cerebellar degenerative diseases were obtained. Volume and mid-sagittal cross-sectional area of the forebrain, brainstem, and cerebellum were calculated for each normal dog and compared between different breeds and ages as absolute and relative values. The ratio of the cerebellum to total brain and of the brainstem to cerebellum mid-sagittal cross-sectional area was compared between normal and affected dogs and the sensitivity and specificity of these ratios at distinguishing normal from affected dogs was calculated. The percentage of the brain occupied by the cerebellum in diverse dog breeds between 1 and 5 years of age was not significantly different, and cerebellar size did not change with increasing age. Using a cut off of 89%, the ratio between the brainstem and cerebellum mid-sagittal cross-sectional area could be used successfully to differentiate affected from unaffected dogs with a sensitivity and specificity of 100%, making this ratio an effective tool for identifying cerebellar atrophy on MR images.
Resumo:
BACKGROUND: Bleeding is a frequent complication during surgery. The intraoperative administration of blood products, including packed red blood cells, platelets and fresh frozen plasma (FFP), is often live saving. Complications of blood transfusions contribute considerably to perioperative costs and blood product resources are limited. Consequently, strategies to optimize the decision to transfuse are needed. Bleeding during surgery is a dynamic process and may result in major blood loss and coagulopathy due to dilution and consumption. The indication for transfusion should be based on reliable coagulation studies. While hemoglobin levels and platelet counts are available within 15 minutes, standard coagulation studies require one hour. Therefore, the decision to administer FFP has to be made in the absence of any data. Point of care testing of prothrombin time ensures that one major parameter of coagulation is available in the operation theatre within minutes. It is fast, easy to perform, inexpensive and may enable physicians to rationally determine the need for FFP. METHODS/DESIGN: The objective of the POC-OP trial is to determine the effectiveness of point of care prothrombin time testing to reduce the administration of FFP. It is a patient and assessor blind, single center randomized controlled parallel group trial in 220 patients aged between 18 and 90 years undergoing major surgery (any type, except cardiac surgery and liver transplantation) with an estimated blood loss during surgery exceeding 20% of the calculated total blood volume or a requirement of FFP according to the judgment of the physicians in charge. Patients are randomized to usual care plus point of care prothrombin time testing or usual care alone without point of care testing. The primary outcome is the relative risk to receive any FFP perioperatively. The inclusion of 110 patients per group will yield more than 80% power to detect a clinically relevant relative risk of 0.60 to receive FFP of the experimental as compared with the control group. DISCUSSION: Point of care prothrombin time testing in the operation theatre may reduce the administration of FFP considerably, which in turn may decrease costs and complications usually associated with the administration of blood products. TRIAL REGISTRATION: NCT00656396.
Resumo:
Designs for deep geological respositories of nuclear waste include bentonite as a hydraulic and chemisorption buffer material to protect the biosphere from leakage of radionuclides. Bentonite is chosen because it is a cheap, naturally occurring material with the required properties. It consists essentially of montmorillonite, a swelling clay mineral. Upon contact with groundwater such clays can seal the repository by incorporating water in the interlayers of their crystalline structure. The intercalated water exhibits significantly different properties to bulk water in the surrounding interparticle pores, such as lower diffusion coefficients (González Sánchez et. al. 2008). This doctoral thesis presents water distribution and diffusion behavior on various time and space scales in montmorillonite. Experimental results are presented for Na- and Cs-montmorillonite samples with a range of bulk dry densities (0.8 to 1.7 g/cm3). The experimental methods employed were neutron scattering (backscattering, diffraction, time-of-flight), adsorption measurements (water, nitrogen) and tracer-through diffusion. For the tracer experiments the samples were fully saturated via the liquid phase under volume-constrained conditions. In contrast, for the neutron scattering experiments, the samples were hydrated via the vapor phase and subsequently compacted, leaving a significant fraction of interparticle pores unfilled with water. Owing to these differences in saturation, the water contents of the samples for neutron scattering were characterized by gravimetry whereas those for the tracer experiments were obtained from the bulk dry density. The amount of surface water in interlayer pores could be successfully discriminated from the amount of bulk-like water in interparticle pores in Na- and Csmontmorillonite using neutron spectroscopy. For the first time in the literature, the distribution of water between these two pore environments was deciphered as a function of gravimetric water content. The amount was compared to a geometrical estimation of the amount of interlayer and interparticle water determined by neutron diffraction and adsorption measurements. The relative abundances of the 1 to 4 molecular water layers in the interlayer were determined from the area ratios of the (001)-diffraction peaks. Depending on the characterization method, different fractions of surface water and interlayer water were obtained. Only surface and interlayer water exists in amontmorillonite with water contents up to 0.18 g/g according to spectroscopic measurements and up to 0.32 g/g according to geometrical estimations, respectively. At higher water contents, bulk-like and interparticle water also exists. The amounts increase monotonically, but not linearly, from zero to 0.33 g/g for bulk-like water and to 0.43 g/g for interparticle water. It was found that water most likely redistributes between the surface and interlayer sites during the spectroscopic measurements and therefore the reported fraction is relevant only below about -10 ºC (Anderson, 1967). The redistribution effect can explain the discrepancy in fractions between the methods. In a novel approach the fractions of water in different pore environments were treated as a fixed parameter to derive local diffusion coefficients for water from quasielastic neutron scattering data, in particular for samples with high water contents. Local diffusion coefficients were obtained for the 1 to 4 molecular water layers in the interlayer of 0.5·10–9, 0.9·10–9, 1.5·10–9 and 1.4·10–9 m²/s, respectively, taking account of the different water fractions (molecular water layer, bulk-like water). The diffusive transport of 22Na and HTO through Na-montmorillonite was measured on the laboratory experimental scale (i.e. cm, days) by tracer through-diffusion experiments. We confirmed that diffusion of HTO is independent of the ionic strength of the external solution in contact with the clay sample but dependent on the bulk dry density. In contrast, the diffusion of 22Na was found to depend on both the ionic strength of the pore solution and on the bulk dry density. The ratio of the pore and surface diffusion could be experimentally determined for 22Na from the dependence of the diffusion coefficient on the ionic strength. Activation energies were derived from the temperaturedependent diffusion coefficients via the Arrhenius relation. In samples with high bulk dry density the activation energies are slightly higher than those of bulk water whereas in low density samples they are lower. The activation energies as a function of ionic strengths of the pore solutions are similar for 22Na and HTO. The facts that (i) the slope of the logarithmic effective diffusion coefficients as a function of the logarithmic ionic strength is less than unity for low bulk dry densities and (ii) two water populations can be observed for high gravimetric water contents (low bulk dry densities) support the interlayer and interparticle porosity model proposed by Glaus et al. (2007), Bourg et al. (2006, 2007) and Gimmi and Kosakowski (2011).
Resumo:
Two new approaches to quantitatively analyze diffuse diffraction intensities from faulted layer stacking are reported. The parameters of a probability-based growth model are determined with two iterative global optimization methods: a genetic algorithm (GA) and particle swarm optimization (PSO). The results are compared with those from a third global optimization method, a differential evolution (DE) algorithm [Storn & Price (1997). J. Global Optim. 11, 341–359]. The algorithm efficiencies in the early and late stages of iteration are compared. The accuracy of the optimized parameters improves with increasing size of the simulated crystal volume. The wall clock time for computing quite large crystal volumes can be kept within reasonable limits by the parallel calculation of many crystals (clones) generated for each model parameter set on a super- or grid computer. The faulted layer stacking in single crystals of trigonal three-pointedstar- shaped tris(bicylco[2.1.1]hexeno)benzene molecules serves as an example for the numerical computations. Based on numerical values of seven model parameters (reference parameters), nearly noise-free reference intensities of 14 diffuse streaks were simulated from 1280 clones, each consisting of 96 000 layers (reference crystal). The parameters derived from the reference intensities with GA, PSO and DE were compared with the original reference parameters as a function of the simulated total crystal volume. The statistical distribution of structural motifs in the simulated crystals is in good agreement with that in the reference crystal. The results found with the growth model for layer stacking disorder are applicable to other disorder types and modeling techniques, Monte Carlo in particular.
Resumo:
Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at root S-NN = 2.76 TeV corresponding to an integrated luminosity of approximately 7 mu b(-1), ATLAS has measured jets with a calorimeter system over the pseudorapidity interval vertical bar eta vertical bar < 2.1 and over the transverse momentum range 38 < pT <210 GeV. Jets were reconstructed using the anti-k(t) algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," R-CP. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. R-CP varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.
Resumo:
Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, Delta phi, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the Delta phi dependence of jet yields in 0.14 nb(-1) of root s(NN) = 2.76 TeV Pb + Pb collisions at the LHC for jet transverse momenta p(T) > 45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Delta phi was characterized by the parameter, nu(jet)(2), and the ratio of out-of-plane (Delta phi similar to pi/2) to in-plane (Delta phi similar to 0) yields. Nonzero nu(jet)(2) values were measured in all centrality bins for p(T) < 160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.
Resumo:
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1