17 resultados para satellite data processing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Methodological evaluation of the proteomic analysis of cardiovascular-tissue material has been performed with a special emphasis on establishing examinations that allow reliable quantitative analysis of silver-stained readouts. Reliability, reproducibility, robustness and linearity were addressed and clarified. In addition, several types of normalization procedures were evaluated and new approaches are proposed. It has been found that the silver-stained readout offers a convenient approach for quantitation if a linear range for gel loading is defined. In addition, a broad range of a 10-fold input (loading 20-200 microg per gel) fulfills the linearity criteria, although at the lowest input (20 microg) a portion of protein species will remain undetected. The method is reliable and reproducible within a range of 65-200 microg input. The normalization procedure using the sum of all spot intensities from a silver-stained 2D pattern has been shown to be less reliable than other approaches, namely, normalization through median or through involvement of interquartile range. A special refinement of the normalization through virtual segmentation of pattern, and calculation of normalization factor for each stratum provides highly satisfactory results. The presented results not only provide evidence for the usefulness of silver-stained gels for quantitative evaluation, but they are directly applicable to the research endeavor of monitoring alterations in cardiovascular pathophysiology.
Resumo:
Due to highly erodible volcanic soils and a harsh climate, livestock grazing in Iceland has led to serious soil erosion on about 40% of the country's surface. Over the last 100 years, various revegetation and restoration measures were taken on large areas distributed all over Iceland in an attempt to counteract this problem. The present research aimed to develop models for estimating percent vegetation cover (VC) and aboveground biomass (AGB) based on satellite data, as this would make it possible to assess and monitor the effectiveness of restoration measures over large areas at a fairly low cost. Models were developed based on 203 vegetation cover samples and 114 aboveground biomass samples distributed over five SPOT satellite datasets. All satellite datasets were atmospherically corrected, and digital numbers were converted into ground reflectance. Then a selection of vegetation indices (VIs) was calculated, followed by simple and multiple linear regression analysis of the relations between the field data and the calculated VIs. Best results were achieved using multiple linear regression models for both %VC and AGB. The model calibration and validation results showed that R2 and RMSE values for most VIs do not vary very much. For percent VC, R2 values range between 0.789 and 0.822, leading to RMSEs ranging between 15.89% and 16.72%. For AGB, R2 values for low-biomass areas (AGB < 800 g/m2) range between 0.607 and 0.650, leading to RMSEs ranging between 126.08 g/m2 and 136.38 g/m2. The AGB model developed for all areas, including those with high biomass coverage (AGB > 800 g/m2), achieved R2 values between 0.487 and 0.510, resulting in RMSEs ranging from 234 g/m2 to 259.20 g/m2. The models predicting percent VC generally overestimate observed low percent VC and slightly underestimate observed high percent VC. The estimation models for AGB behave in a similar way, but over- and underestimation are much more pronounced. These results show that it is possible to estimate percent VC with high accuracy based on various VIs derived from SPOT satellite data. AGB of restoration areas with low-biomass values of up to 800 g/m2 can likewise be estimated with high accuracy based on various VIs derived from SPOT satellite data, whereas in the case of high biomass coverage, estimation accuracy decreases with increasing biomass values. Accordingly, percent VC can be estimated with high accuracy anywhere in Iceland, whereas AGB is much more difficult to estimate, particularly for areas with high-AGB variability.
Resumo:
A feasibility study by Pail et al. (Can GOCE help to improve temporal gravity field estimates? In: Ouwehand L (ed) Proceedings of the 4th International GOCE User Workshop, ESA Publication SP-696, 2011b) shows that GOCE (‘Gravity field and steady-state Ocean Circulation Explorer’) satellite gravity gradiometer (SGG) data in combination with GPS derived orbit data (satellite-to-satellite tracking: SST-hl) can be used to stabilize and reduce the striping pattern of a bi-monthly GRACE (‘Gravity Recovery and Climate Experiment’) gravity field estimate. In this study several monthly (and bi-monthly) combinations of GRACE with GOCE SGG and GOCE SST-hl data on the basis of normal equations are investigated. Our aim is to assess the role of the gradients (solely) in the combination and whether already one month of GOCE observations provides sufficient data for having an impact in the combination. The estimation of clean and stable monthly GOCE SGG normal equations at high resolution ( > d/o 150) is found to be difficult, and the SGG component, solely, does not show significant added value to monthly and bi-monthly GRACE gravity fields. Comparisons of GRACE-only and combined monthly and bi-monthly solutions show that the striping pattern can only be reduced when using both GOCE observation types (SGG, SST-hl), and mainly between d/o 45 and 60.
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.
Resumo:
Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.
Resumo:
The Advanced Very High Resolution Radiometer (AVHRR) carried on board the National Oceanic and Atmospheric Administration (NOAA) and the Meteorological Operational Satellite (MetOp) polar orbiting satellites is the only instrument offering more than 25 years of satellite data to analyse aerosols on a daily basis. The present study assessed a modified AVHRR aerosol optical depth τa retrieval over land for Europe. The algorithm might also be applied to other parts of the world with similar surface characteristics like Europe, only the aerosol properties would have to be adapted to a new region. The initial approach used a relationship between Sun photometer measurements from the Aerosol Robotic Network (AERONET) and the satellite data to post-process the retrieved τa. Herein a quasi-stand-alone procedure, which is more suitable for the pre-AERONET era, is presented. In addition, the estimation of surface reflectance, the aerosol model, and other processing steps have been adapted. The method's cross-platform applicability was tested by validating τa from NOAA-17 and NOAA-18 AVHRR at 15 AERONET sites in Central Europe (40.5° N–50° N, 0° E–17° E) from August 2005 to December 2007. Furthermore, the accuracy of the AVHRR retrieval was related to products from two newer instruments, the Medium Resolution Imaging Spectrometer (MERIS) on board the Environmental Satellite (ENVISAT) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Aqua/Terra. Considering the linear correlation coefficient R, the AVHRR results were similar to those of MERIS with even lower root mean square error RMSE. Not surprisingly, MODIS, with its high spectral coverage, gave the highest R and lowest RMSE. Regarding monthly averaged τa, the results were ambiguous. Focusing on small-scale structures, R was reduced for all sensors, whereas the RMSE solely for MERIS substantially increased. Regarding larger areas like Central Europe, the error statistics were similar to the individual match-ups. This was mainly explained with sampling issues. With the successful validation of AVHRR we are now able to concentrate on our large data archive dating back to 1985. This is a unique opportunity for both climate and air pollution studies over land surfaces.
Resumo:
The highly pathogenic avian influenza (HPAI) H5N1 virus that emerged in southern China in the mid-1990s has in recent years evolved into the first HPAI panzootic. In many countries where the virus was detected, the virus was successfully controlled, whereas other countries face periodic reoccurrence despite significant control efforts. A central question is to understand the factors favoring the continuing reoccurrence of the virus. The abundance of domestic ducks, in particular free-grazing ducks feeding in intensive rice cropping areas, has been identified as one such risk factor based on separate studies carried out in Thailand and Vietnam. In addition, recent extensive progress was made in the spatial prediction of rice cropping intensity obtained through satellite imagery processing. This article analyses the statistical association between the recorded HPAI H5N1 virus presence and a set of five key environmental variables comprising elevation, human population, chicken numbers, duck numbers, and rice cropping intensity for three synchronous epidemic waves in Thailand and Vietnam. A consistent pattern emerges suggesting risk to be associated with duck abundance, human population, and rice cropping intensity in contrast to a relatively low association with chicken numbers. A statistical risk model based on the second epidemic wave data in Thailand is found to maintain its predictive power when extrapolated to Vietnam, which supports its application to other countries with similar agro-ecological conditions such as Laos or Cambodia. The model’s potential application to mapping HPAI H5N1 disease risk in Indonesia is discussed.
Resumo:
A joint reprocessing of GPS, GLONASS and SLR observations has been carried out at TU Dresden, TU Munich, AIUB and ETH Zurich. Common a priori models have been applied for the processing of all types of observation to ensure both consistent parameter estimates and the rigorous combination of microwave and optical measurements. Based on that reprocessing results, we evaluate the impact of adding GLONASS observations to the standard GPS data processing. In particular, changes in station position time series and day boundary overlaps of consecutive satellite arcs are analyzed. In addition, the GNSS orbits derived from microwave measurements are validated using independent SLR range measurements. Our SLR residuals indicate a significant improvement compared to previous results. Furthermore, we evaluate the performance of our high-rate (30s) combined GNSS satellite clocks and discuss associated zero-difference phase residuals.
Resumo:
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth’s atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field and ocean tide models are used for the reduced-dynamic orbit determination.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.