35 resultados para sanitization of environmental surfaces
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PRINCIPLES To evaluate the validity and feasibility of a novel photography-based home assessment (PhoHA) protocol, as a possible substitute for on-site home assessment (OsHA). METHODS A total of 20 patients aged ≥65 years who were hospitalised in a rehabilitation centre for musculoskeletal disorders affecting mobility participated in this prospective validation study. For PhoHA, occupational therapists rated photographs and measurements of patients' homes provided by patients' confidants. For OsHA, occupational therapists conducted a conventional home visit. RESULTS Information obtained by PhoHA was 79.1% complete (1,120 environmental factors identified by PhoHA vs 1416 by OsHA). Of the 1,120 factors, 749 had dichotomous (potential hazards) and 371 continuous scores (measurements with tape measure). Validity of PhoHA to potential hazards was good (sensitivity 78.9%, specificity 84.9%), except for two subdomains (pathways, slippery surfaces). Pearson's correlation coefficient for the validity of measurements was 0.87 (95% confidence interval [CI 0.80-0.92, p <0.001). Agreement between methods was 0.52 (95%CI 0.34-0.67, p <0.001, Cohen's kappa coefficient) for dichotomous and 0.86 (95%CI 0.79-0.91, p <0.001, intraclass correlation coefficient) for continuous scores. Costs of PhoHA were 53.0% lower than those of OsHA (p <0.001). CONCLUSIONS PhoHA has good concurrent validity for environmental assessment if instructions for confidants are improved. PhoHA is potentially a cost-effective method for environmental assessment.
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
Access and accessibility are important determinants of people’s ability to utilise natural resources, and have a strong impact on household welfare. Physical accessibility of natural resources, on the other hand, has generally been regarded as one of the most important drivers of land-use and land-cover changes. Based on two case studies, this article discusses evidence of the impact of access to services and access to natural resources on household poverty and on the environment. We show that socio-cultural distances are a key limiting factor for gaining access to services, and thereby for improved household welfare. We also discuss the impact of socio-cultural distances on access to natural resources, and show that large-scale commercial exploitation of natural resources tends to occur beyond the spatial reach of socio-culturally and economically marginalised population segments. We conclude that it is essential to pay more attention to improving the structural environment that presently leaves social minority groups marginalised. Innovative approaches that use natural resource management to induce poverty reduction – for example, through compensation of local farmers for environmental services – appear to be promising avenues that can lead to integration of the objectives of poverty reduction and sustainable environmental stewardship.
Resumo:
Like other mountain areas in the world, the Hindu Kush-Himalayan (HKH) region is particularly vulnerable to climate change. Ongoing climate change processes are projected to have a high impact on the HKH region, and accelerated warming has been reported in the Himalayas. These climate change impacts will be superimposed on a variety of other environmental and social stresses, adding to the complexity of the issues. The sustainable use of natural resources is crucial to the long-term stability of the fragile mountain ecosystems in the HKH and to sustain the socio-ecological resilience that forms the basis of sustainable livelihoods in the region. In order to be prepared for these challenges, it is important to take stock of previous research. The ‘People and Resource Dynamics Project’ (PARDYP), implemented by International Centre for Integrated Mountain Development (ICIMOD), provides a variety of participatory options for sustainable land management in the HKH region. The PARDYD project was a research for development project that operated in five middle mountain watersheds across the HKH – two in Nepal and one each in China, India, and Pakistan. The project ran from 1996 to 2006 and focused on addressing the marginalisation of mountain farmers, the use and availability of water, issues relating to land and forest degradation and declining soil fertility, the speed of regeneration of degraded land, and the ability of the natural environment to support the growing needs of the region’s increasing population. A key learning from the project was that the opinion of land users is crucial to the acceptance (and, therefore, successful application) of new technologies and approaches. A major challenge at the end of every project is to promote knowledge sharing and encourage the cross-fertilization of ideas (e.g., in the case of PARDYP, with other middle mountain inhabitants and practitioners in the region) and to share lessons learned with a wider audience. This paper will highlight how the PARDYP findings, including ways of addressing soil fertility and water scarcity, have been mainstreamed in the HKH region through capacity building (international, regional, and national training courses), networking, and the provision of backstopping services. In addition, in view of the challenges in watershed management in the HKH connected to environmental change, the lessons learned from the PARDYP are now being used by ICMOD to define and package climate change proof technology options to address climate change adaptation.