5 resultados para salt-stress

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structural and functional repertoire of small non-protein-coding RNAs (ncRNAs) is central for establishing gene regulation networks in cells and organisms. Here, we show that an mRNA-derived 18-nucleotide-long ncRNA is capable of downregulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unkown mechanism of translation regulation. Ribosome-targeted small ncRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules are key players in controlling gene expression at multiple steps in all domains of life. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily (such as micro RNAs and small-interfering RNAs), not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). This is unexpected, given the central position the ribosome plays during gene expression. To investigate whether such a class of regulatory ncRNAs does exist we performed genomic screens for small ribosome-associated RNAs in various model organisms of all three domains [1,2]. Here we show that an mRNA-derived 18 nucleotide long ncRNA is capable of down-regulating translation in Saccharomyces cerevisiae by directly targeting the ribosome [3]. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator under these stress conditions. Our data reveal the ribosome as a target for small regulatory ncRNAs and unveil the existence of a novel mechanism of translation regulation. Analogous genomic screens in organisms spanning all three domains of life demonstrate the existence of thousands of ncRNA candidates putatively regulating the ribosome. We therefore anticipate that ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory ncRNAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small non-protein-coding RNAs (ncRNAs) are key players in controlling gene expression. The advantage of ncRNA regulators is their almost immediate availability since they act on the RNA level. The list of validated ncRNAs regulating translation, such as micro RNAs, is growing steadily, however, they almost exclusively target the mRNA rather than the ribosome. This is unexpected given the central position the ribosome plays. Here we show that an mRNA-derived 18 nucleotide long ncRNA is capable of down-regulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unknown mechanism of translation regulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In transgenic Arabidopsis a patatin class I promoter from potato is regulated by sugars and proline (Pro), thus integrating signals derived from carbon and nitrogen metabolism. In both cases a signaling cascade involving protein phosphatases is involved in induction. Other endogenous genes are also regulated by both Pro and carbohydrates. Chalcone synthase (CHS) gene expression is induced by both, whereas the Pro biosynthetic Δ1-pyrroline-5-carboxylate synthetase (P5CS) is induced by high Suc concentrations but repressed by Pro, and Pro dehydrogenase (ProDH) is inversely regulated. The mutantrsr1-1, impaired in sugar dependent induction of the patatin promoter, is hypersensitive to low levels of external Pro and develops autofluorescence and necroses. Toxicity of Pro can be ameliorated by salt stress and exogenously supplied metabolizable carbohydrates. The rsr1-1 mutant shows a reduced response regarding sugar induction of CHS andP5CS expression. ProDH expression is de-repressed in the mutant but still down-regulated by sugar. Pro toxicity seems to be mediated by the degradation intermediate Δ1-pyrroline-5-carboxylate. Induction of the patatin promoter by carbohydrates and Pro, together with the Pro hypersensitivity of the mutant rsr1-1, demonstrate a new link between carbon/nitrogen and stress responses.