2 resultados para sPLA

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingosylphosphorylcholine (SPC) is a bioactive lipid that binds to G protein-coupled-receptors and activates various signaling cascades. Here, we show that in renal mesangial cells, SPC not only activates various protein kinase cascades but also activates Smad proteins, which are classical members of the transforming growth factor-beta (TGFbeta) signaling pathway. Consequently, SPC is able to mimic TGFbeta-mediated cell responses, such as an anti-inflammatory and a profibrotic response. Interleukin-1beta-stimulated prostaglandin E(2) formation is dose-dependently suppressed by SPC, which is paralleled by reduced secretory phospholipase A(2) (sPLA(2)) protein expression and activity. This effect is due to a reduction of sPLA(2) mRNA expression caused by inhibited sPLA(2) promoter activity. Furthermore, SPC upregulates the profibrotic connective tissue growth factor (CTGF) protein and mRNA expression. Blocking TGFbeta signaling by a TGFbeta receptor kinase inhibitor causes an inhibition of SPC-stimulated Smad activation and reverses both the negative effect of SPC on sPLA(2) expression and the positive effect on CTGF expression. In summary, our data show that SPC, by mimicking TGFbeta, leads to a suppression of proinflammatory mediator production and stimulates a profibrotic cell response that is often the end point of an anti-inflammatory reaction. Thus, targeting SPC receptors may represent a novel therapeutic strategy to cope with inflammatory diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: FTY720 is a potent immunomodulatory prodrug that is converted to its active phosphorylated form by a sphingosine kinase. Here we have studied whether FTY720 mimicked the action of sphingosine-1-phosphate (S1P) and exerted an anti-inflammatory potential in renal mesangial cells. EXPERIMENTAL APPROACH: Prostaglandin E(2) (PGE(2)) was quantified by an enzyme-linked immunosorbent-assay. Secretory phospholipase A(2) (sPLA(2)) protein was detected by Western blot analyses. mRNA expression was determined by Northern blot analysis and sPLA(2)-promoter activity was measured by a luciferase-reporter-gene assay. KEY RESULTS: Stimulation of cells for 24 h with interleukin-1beta (IL-1beta) is known to trigger increased PGE(2) formation which coincides with an induction of the mRNA for group-IIA-sPLA(2) and protein expression. FTY720 dose-dependently suppressed IL-1beta-induced IIA-sPLA(2) protein secretion and activity in the supernatant. This effect is due to a suppression of cytokine-induced sPLA(2) mRNA expression which results from a reduced promoter activity. As a consequence of suppressed sPLA(2) activity, PGE(2) formation is also reduced by FTY720. Mechanistically, the FTY720-suppressed sPLA(2) expression results from an activation of the TGFbeta/Smad signalling cascade since inhibition of the TGFbeta receptor type I by a specific kinase inhibitor reverses the FTY720-mediated decrease of sPLA(2) protein expression and sPLA(2) promoter activity. CONCLUSIONS AND IMPLICATIONS: In summary, our data show that FTY720 was able to mimic the anti-inflammatory activity of TGFbeta and blocked cytokine-triggered sPLA(2) expression and subsequent PGE(2) formation. Thus, FTY720 may exert additional in vivo effects besides the well reported immunomodulation and its anti-inflammatory potential should be considered.