17 resultados para roller derby
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: Measuring peritoneal lactate concentrations could be useful for detecting splanchnic hypoperfusion. The aims of this study were to evaluate the properties of a new membrane-based microdialyzer in vitro and to assess the ability of the dialyzer to detect a clinically relevant decrease in splanchnic blood flow in vivo. DESIGN: A membrane-based microdialyzer was first validated in vitro. The same device was tested afterward in a randomized, controlled animal experiment. SETTING: University experimental research laboratory. SUBJECTS: Twenty-four Landrace pigs of both genders. INTERVENTIONS: In vitro: Membrane microdialyzers were kept in warmed sodium lactate baths with lactate concentrations between 2 and 8 mmol/L for 10-120 mins, and microdialysis lactate concentrations were measured repeatedly (210 measurements). In vivo: An extracorporeal shunt with blood reservoir and roller pump was inserted between the proximal and distal abdominal aorta, and a microdialyzer was inserted intraperitoneally. In 12 animals, total splanchnic blood flow (measured by transit time ultrasound) was reduced by a median 43% (range, 13% to 72%) by activating the shunt; 12 animals served as controls. MEASUREMENTS AND MAIN RESULTS: In vitro: The fractional lactate recovery was 0.59 (0.32-0.83) after 60 mins and 0.82 (0.71-0.87) after 90 mins, with no further increase thereafter. At 60 and 90 mins, the fractional recovery was independent of the lactate concentration. In vivo: Abdominal blood flow reduction resulted in an increase in peritoneal microdialysis lactate concentration from 1.7 (0.3-3.8) mmol/L to 2.8 (1.3-6.2) mmol/L (p = .006). At the same time, mesenteric venous-arterial lactate gradient increased from 0.1 (-0.2-0.8) mmol/L to 0.3 (-0.3 -1.8) mmol/L (p = .032), and mesenteric venous-arterial Pco2 gradients increased from 12 (8-19) torr to 21 (11-54) torr (p = .005). CONCLUSIONS: Peritoneal membrane microdialysis provides a method for the assessment of splanchnic ischemia, with potential for clinical application.
Resumo:
Assessment of regional blood flow changes is difficult in the clinical setting. We tested whether conventional pulmonary artery catheters (PACs) can be used to measure regional venous blood flows by inverse thermodilution (ITD). Inverse thermodilution was tested in vitro and in vivo using perivascular ultrasound Doppler (USD) flow probes as a reference. In anesthetized pigs, PACs were inserted in jugular, hepatic, renal, and femoral veins, and their measurements were compared with simultaneous USD flow measurements from carotid, hepatic, renal, and femoral arteries and from portal vein. Fluid boluses were injected through the PAC's distal port, and temperature changes were recorded from the proximally located thermistor. Injectates of 2 and 5 mL at 22 degrees C and 4 degrees C were used. Flows were altered by using a roller pump (in vitro), and infusion of dobutamine and induction of cardiac tamponade, respectively. In vitro: At blood flows between 400 mL . min-1 and 700 mL . min-1 (n = 50), ITD and USD correlated well (r = 0.86, P < 0.0001), with bias and limits of agreement of 3 +/- 101 mL . min-1. In vivo: 514 pairs of measurements had to be excluded from analysis for technical reasons, and 976 were analyzed. Best correlations were r = 0.87 (P < 0.0001) for renal flow and r = 0.46 (P < 0.0001) for hepatic flow. No significant correlation was found for cerebral and femoral flows. Inverse thermodilution using conventional PAC compared moderately well with USD for renal but not for other flows despite good in vitro correlation in various conditions. In addition, this method has significant technical limitations.
Resumo:
Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7 days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls. The amphetamine-induced rotational behavior of all 6-OHDA-lesioned animals was monitored at various time points from 18 days before transplantation and up to 80 days after transplantation. Tyrosine hydroxylase (TH) immunostaining of the histologically processed brains served to assess the long-term survival of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after explantation, with an additional 23.1% loss after grafting, leaving 8.7% of the original number of TH-ir cells in the intracerebral grafts. This is to be compared with a survival rate of 9.1% for the TH-ir cells in the cell-suspension grafts. Immunostaining for the calcium-binding proteins calretinin, calbindin, and parvalbumin showed no differences in the neuronal expression of these proteins between the two graft types. In conclusion, we found comparable dopaminergic cell survival and functional effects of tissue-culture grafts and cell-suspension grafts, which currently is the type of graft most commonly used for experimental and clinical grafting. In this sense the result is promising for the development of an effective in vitro storage of fetal nigral tissue, which at the same time would allow neuroprotective and neurotrophic treatment prior to intracerebral transplantation.
Resumo:
Free-floating roller tube cultures of human fetal (embryonic age 6-10 weeks post-conception) and rat fetal (embryonic day 13) ventral mesencephalon were prepared. After 7-15 days in vitro, the mesencephalic tissue cultures were transplanted into the striatum of adult rats that had received unilateral injections of 6-hydroxydopamine into the nigrostriatal bundle 3-5 weeks prior to transplantation. Graft survival was assessed in tyrosine hydroxylase (TH)-immunostained serial sections of the grafted brains up to post-transplantation week 4 for the human fetal xenografts and post-transplantation week 11 for the rat fetal allografts. D-amphetamine-induced rotation was monitored up to 10 weeks after transplantation in the allografted animals and compared with that of lesioned-only control animals. All transplanted animals showed large, viable grafts containing TH-immunoreactive (ir) neurons. The density of TH-ir neurons in the human fetal xenografts and in rat fetal allografts was similar. A significant amelioration of the amphetamine-induced rotation was observed in the animals that received cultured tissue allografts. These results promote the feasibility of in vitro maintenance of fetal human and rat nigral tissue prior to transplantation using the free-floating roller tube technique.
Resumo:
Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth- and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopamine-lesioned rats. While all groups of rats showed a significant reduction in d-amphetamine-induced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function.
Resumo:
Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.
Resumo:
In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.
Resumo:
BACKGROUND "The feeling of being there" is one possible way to describe the phenomenon of feeling present in a virtual environment and to act as if this environment is real. One brain area, which is hypothesized to be critically involved in modulating this feeling (also called presence) is the dorso-lateral prefrontal cortex (dlPFC), an area also associated with the control of impulsive behavior. METHODS In our experiment we applied transcranial direct current stimulation (tDCS) to the right dlPFC in order to modulate the experience of presence while watching a virtual roller coaster ride. During the ride we also registered electro-dermal activity. Subjects also performed a test measuring impulsiveness and answered a questionnaire about their presence feeling while they were exposed to the virtual roller coaster scenario. RESULTS Application of cathodal tDCS to the right dlPFC while subjects were exposed to a virtual roller coaster scenario modulates the electrodermal response to the virtual reality stimulus. In addition, measures reflecting impulsiveness were also modulated by application of cathodal tDCS to the right dlPFC. CONCLUSION Modulating the activation with the right dlPFC results in substantial changes in responses of the vegetative nervous system and changed impulsiveness. The effects can be explained by theories discussing the top-down influence of the right dlPFC on the "impulsive system".
Resumo:
INTRODUCTION the rise in the number of older, frail adults necessitates that future doctors are adequately trained in the skills of geriatric medicine. Few countries have dedicated curricula in geriatric medicine at the undergraduate level. The aim of this project was to develop a consensus among geriatricians on a curriculum with the minimal requirements that a medical student should achieve by the end of medical school. METHODS a modified Delphi process was used. First, educational experts and geriatricians proposed a set of learning objectives based on a literature review. Second, three Delphi rounds involving a panel with 49 experts representing 29 countries affiliated to the European Union of Medical Specialists (UEMS) was used to gain consensus for a final curriculum. RESULTS the number of disagreements following Delphi Rounds 1 and 2 were 81 and 53, respectively. Complete agreement was reached following the third round. The final curriculum consisted of detailed objectives grouped under 10 overarching learning outcomes. DISCUSSION a consensus on the minimum requirements of geriatric learning objectives for medical students has been agreed by European geriatricians. Major efforts will be needed to implement these requirements, given the large variation in the quality of geriatric teaching in medical schools. This curriculum is a first step to help improve teaching of geriatrics in medical schools, and will also serve as a basis for advancing postgraduate training in geriatrics across Europe.
Resumo:
Zusammenfassung Die Betreuung geriatrischer Patientinnen und Patienten setzt, nebst einer entsprechenden Haltung, fundierte Kenntnisse in Diagnostik und Behandlung praktisch aller medizinischen Fachgebiete voraus. Daher ist es wichtig, dass die Kompetenz von Studierenden der Humanmedizin im Bereich Geriatrie entsprechend gefördert wird. Bis heute hat jedoch die studentische Ausbildung im Fach Geriatrie an vielen europäischen Universitäten einen unklaren oder untergeordneten Stellenwert. Als ersten Schritt zur Förderung der Lehre in der Geriatrie hat die Europäische Facharztvereinigung Geriatrie (UEMS-GMS) in einem Delphi-Prozess einen Lernzielkatalog entwickelt. Dieser Katalog enthält die Mindestanforderungen mit spezifischen Lernzielen (Wissen, Fertigkeiten und Haltungen), welche die Studierenden der Humanmedizin bezüglich Geriatrie bis zum Abschluss des Medizinstudiums erwerben sollen. Zur Förderung der Implementierung dieses neuen, kompetenzbasierten Lernzielkatalogs an den deutschsprachigen Universitäten wurde eine an den Sprachgebrauch des „DACH-Raums“ (Deutschland, Österreich und Schweiz) angepasste deutsche Version erstellt. Im vorliegenden Beitrag wird diese Übersetzung vorgestellt. Die Fachgesellschaften für Geriatrie aus Deutschland, Österreich und der Schweiz empfehlen den medizinischen Fakultäten der jeweiligen Länder, diesen Katalog umzusetzen.
Resumo:
Introduction: Treating low back pain (LBP) has become an increasing challenge, as it is one of the main factors causing pain and is accompanied by high costs for the individual and the society. LBP can be caused by trauma of the intervertebral disc (IVD) or IVD degeneration. In the case of disc herniation the inner gelatinous part of the IVD, called nucleus pulposus, is pressed through the fibrous, annulus fibrosus that forms the outer part of the IVD. Today’s gold standard for treatment is extensive surgery as removal of the IVD and fusion of the vertebrae. In order to find a more gentle way to treat LBP and restore the native IVD we use a novel silk fleece-membrane composite from genetically modified silk worms whose silk contains a growth factor (GDF-6) that is associated with pushing stem cells towards a disc like phenotype (1). By combining it with a genipin-enhanced fibrin hydrogel we tested its suitability in organ culture on prior injured bovine IVD in our custom built two-degree of freedom bioreactor to mimic natural loading conditions. Material & Methods: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue followed by cutting out the IVDs as previously described (2). Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described (2). On the next day injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35-55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d (2). After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy- proline) were determined. Finally, real-time qPCR of major IVD marker and inflammation genes was performed to judge integrity of IVDs. Results: The fibrin hydrogel is able to keep the silk seal in place throughout the 14 days of in organ culture under all conditions. Additionally, cell activity showed optimistic results and we could not confirm negative effects of the repaired discs regarding overexpression of inflammation markers. Conclusions: The genipin-enhanced fibrin hydrogel in combination with the silk fleece- membrane composite seems to be a promising approach for IVD repair. Currently we assess the capability of GDF-6 incorporated in our silk composites on human mesenchymal stem cells and later on in organ culture. References 1. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014, Mar 12;16(2):R67. 2. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. Acknowledgements. This work is funded by the Gebert Rüf Foundation, project number GRS-028/13.