11 resultados para reversed-phase HPLC
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Gemcitabine (2'2'-difluorodeoxycytidine) is a pyrimidine analog used in the treatment of a variety of solid tumors. After intravenous (i.v.) administration, it is rapidly inactivated to 2'-deoxy-2',2'-difluorouridine (dFdU). A sensitive analytical method for the quantitation of gemcitabine is required for the assessment of alternative dosage and treatment schemes. A rapid and robust RP-HPLC assay for analysis of gemcitabine in human and animal plasma and serum was developed and validated using 2'-deoxyuridine (dU) and 5-fluoro-2'-deoxyuridine (5FdU) as internal standards. It is based on protein precipitation, the use of an Atlantis dC18 column of 100 mm length (inner diameter, 4.6 mm; particle size, 3 microm) and isocratic elution using a 10 mM phosphate buffer, pH 3.0, followed by isocratic elution with the same buffer containing 3% of ACN. For gemcitabine, RSD values for intraday and interday precision were < 4.4 and 5.3%, respectively, the LOQ was 20 ng/mL, and the assay was linear in the range of 0.020-20 microg/mL with an accuracy of > or =89%. The recovery for gemcitabine, dU and 5FdU was 86-98%. The assay was applied to determine gemcitabine levels in plasma samples of patients collected during and shortly after conventional infusion of 25-30 mg/kg body mass (levels: 2.0-18.9 microg/mL) and rats that received lower doses (1.5 mg/kg) via i.v., subcutaneous and oral drug administration (levels: 0.20-2.60 microg/mL). It could also be applied to estimate dFdU levels in human plasma.
Resumo:
Mastitic milk is associated with increased bovine protease activity, such as that from plasmin and somatic cell enzymes, which cause proteolysis of the caseins and may reduce cheese yield and quality. The aim of this work was to characterize the peptide profile resulting from proteolysis in a model mastitis system and to identify the proteases responsible. One quarter of each of 2 cows (A and B) was infused with lipoteichoic acid from Staphylococcus aureus. The somatic cell counts of the infused quarters reached a peak 6h after infusion, whereas plasmin activity of those quarters also increased, reaching a peak after 48 and 12h for cow A and B, respectively. Urea-polyacrylamide gel electrophoretograms of milk samples of cow A and B obtained at different time points after infusion and incubated for up to 7 d showed almost full hydrolysis of beta- and alpha(S1)-casein during incubation of milk samples at peak somatic cell counts, with that of beta-casein being faster than that of alpha(S1)-casein. Two-dimensional gel electrophoretograms of milk 6h after infusion with the toxin confirmed hydrolysis of beta- and alpha(S1)-casein and the appearance of lower-molecular-weight products. Peptides were subsequently separated by reversed-phase HPLC and handmade nanoscale C(18) columns, and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Twenty different peptides were identified and shown to originate from alpha(s1)- and beta-casein. Plasmin, cathepsin B and D, elastase, and amino- and carboxypeptidases were suggested as possible responsible proteases based on the peptide cleavage sites. The presumptive activity of amino- and carboxypeptidases is surprising and may indicate the activity of cathepsin H, which has not been reported in milk previously.
Resumo:
Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.
Resumo:
Carnitine is an amino acid derivative that plays a key role in energy metabolism. Endogenous carnitine is found in its free form or esterified with acyl groups of several chain lengths. Quantification of carnitine and acylcarnitines is of particular interest for screening for research and metabolic disorders. We developed a method with online solid-phase extraction coupled to high-performance liquid chromatography and tandem mass spectrometry to quantify carnitine and three acylcarnitines with different polarity (acetylcarnitine, octanoylcarnitine, and palmitoylcarnitine). Plasma samples were deproteinized with methanol, loaded on a cation exchange trapping column and separated on a reversed-phase C8 column using heptafluorobutyric acid as an ion-pairing reagent. Considering the endogenous nature of the analytes, we quantified with the standard addition method and with external deuterated standards. Solid-phase extraction and separation were achieved within 8 min. Recoveries of carnitine and acylcarnitines were between 98 and 105 %. Both quantification methods were equally accurate (all values within 84 to 116 % of target concentrations) and precise (day-to-day variation of less than 18 %) for all carnitine species and concentrations analyzed. The method was used successfully for determination of carnitine and acylcarnitines in different human samples. In conclusion, we present a method for simultaneous quantification of carnitine and acylcarnitines with a rapid sample work-up. This approach requires small sample volumes and a short analysis time, and it can be applied for the determination of other acylcarnitines than the acylcarnitines tested. The method is useful for applications in research and clinical routine.
Resumo:
A convenient and rapid method for the simultaneous determination by HPLC of 3-hydroxyanthranilic acid and the dimer derived by its oxidation, cinnabarinic acid, is described. Buffers or biological samples containing these two Trp metabolites were acidified to pH 2.0 and extracted with ethyl acetate with recoveries of 96.5 +/- 0.5 and 93.4 +/- 3.7% for 3-hydroxyanthranilic and cinnabarinic acid, respectively. The two compounds were separated on a reversed-phase (C18) column combined with ion-pair chromatography and detected photometrically or electrochemically. The method was applied successfully to biological systems in which formation of either 3-hydroxyanthranilic or cinnabarinic acid had been described previously. Thus, interferon-gamma-treated human peripheral blood mononuclear cells formed and released significant amounts of 3-hydroxyanthranilic acid into the culture medium and mouse liver nuclear fraction possessed high "cinnabarinic acid synthase" activity. In contrast, addition of 3-hydroxyanthranilic acid to human erythrocytes resulted in only marginal formation of cinnabarinic acid. We conclude that the method described is specific, sensitive, and suitable for the detection of the two Trp metabolites in biological systems.
Resumo:
New directly acting antivirals (DAAs) that inhibit hepatitis C virus (HCV) replication are increasingly used for the treatment of chronic hepatitis C. A marked pharmacokinetic variability and a high potential for drug-drug interactions between DAAs and numerous drug classes have been identified. In addition, ribavirin (RBV), commonly associated with hemolytic anemia, often requires dose adjustment, advocating for therapeutic drug monitoring (TDM) in patients under combined antiviral therapy. However, an assay for the simultaneous analysis of RBV and DAAs constitutes an analytical challenge because of the large differences in polarity among these drugs, ranging from hydrophilic (RBV) to highly lipophilic (telaprevir [TVR]). Moreover, TVR is characterized by erratic behavior on standard octadecyl-based reversed-phase column chromatography and must be separated from VRT-127394, its inactive C-21 epimer metabolite. We have developed a convenient assay employing simple plasma protein precipitation, followed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of levels of RBV, boceprevir, and TVR, as well as its metabolite VRT-127394, in plasma. This new, simple, rapid, and robust HPLC-MS/MS assay offers an efficient method of real-time TDM aimed at maximizing efficacy while minimizing the toxicity of antiviral therapy.
Resumo:
We describe here a new reversed-phase high-performance liquid chromatography with mass spectrometry detection method for quantifying intact cytokinin nucleotides in human K-562 leukemia cells. Tandem mass spectrometry was used to identify the intracellular metabolites (cytokinin monophosphorylated, diphosphorylated, and triphosphorylated nucleotides) in riboside-treated cells. For the protein precipitation and sample preparation, a trichloroacetic acid extraction method is used. Samples are then back-extracted with diethyl ether, lyophilized, reconstituted, and injected into the LC system. Analytes were quantified in negative selected ion monitoring mode using a single quadrupole mass spectrometer. The method was validated in terms of retention time stabilities, limits of detection, linearity, recovery, and analytical accuracy. The developed method was linear in the range of 1-1,000 pmol for all studied compounds. The limits of detection for the analytes vary from 0.2 to 0.6 pmol.
Resumo:
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Resumo:
The range of novel psychoactive substances (NPS) including phenethylamines, cathinones, piperazines, tryptamines, etc. is continuously growing. Therefore, fast and reliable screening methods for these compounds are essential and needed. The use of dried blood spots (DBS) for a fast straightforward approach helps to simplify and shorten sample preparation significantly. DBS were produced from 10 µl of whole blood and extracted offline with 500 µl methanol followed by evaporation and reconstitution in mobile phase. Reversed-phase chromatographic separation and mass spectrometric detection (RP-LC-MS/MS) was achieved within a run time of 10 min. The screening method was validated by evaluating the following parameters: limit of detection (LOD), matrix effect, selectivity and specificity, extraction efficiency, and short-term and long-term stability. Furthermore, the method was applied to authentic samples and results were compared with those obtained with a validated whole blood method used for Routine analysis of NPS. LOD was between 1 and 10 ng/ml. No interference from Matrix compounds was observed. The method was proven to be specific and selective for the analytes, although with limitations for 3-FMC/flephedrone and MDDMA/MDEA. Mean extraction efficiency was 84.6 %. All substances were stable in DBS for at least a week when cooled. Cooling was essential for the stability of cathinones. Prepared samples were stable for at least 3 days. Comparison to the validated whole blood method yielded similar results. DBS were shown to be useful in developing a rapid screening method for NPS with simplified sample preparation. Copyright © 2013 John Wiley & Sons, Ltd
Resumo:
Arginine vasopressin (AVP) has been employed successfully during cardiopulmonary resuscitation, but there exist only few data about the effects of AVP infusion for cardiovascular failure during the post-cardiac arrest period. Cardiovascular failure is one of the main causes of death after successful resuscitation from cardiac arrest. Although the "post-resuscitation syndrome" has been described as a "sepsis-like" syndrome, there is little information about the haemodynamic response to AVP in advanced cardiovascular failure after cardiac arrest. In this retrospective study, haemodynamic and laboratory variables in 23 patients with cardiovascular failure unresponsive to standard haemodynamic therapy during the post-cardiac arrest period were obtained before, and 30 min, 1, 4, 12, 24, 48, and 72 h after initiation of a supplementary AVP infusion (4 IU/h). During the observation period, AVP significantly increased mean arterial blood pressure (58+/-14 to 75+/-19 mmHg, p < 0.001), and decreased noradrenaline (norepinephrine) (1.31+/-2.14 to 0.23+/-0.3 microg/kg/min, p = 0.03), adrenaline (epinephrine) (0.58+/-0.23 to 0.04+/-0.03 microg/kg/min, p = 0.001), and milrinone requirements (0.46+/-0.15 to 0.33+/-0.22 microg/kg/min, p < 0.001). Pulmonary capillary wedge pressure changed significantly (p < 0.001); an initial increase being followed by a decrease below baseline values. While arterial lactate concentrations (95+/-64 to 21+/-18 mg/dL, p < 0.001) and pH (7.27+/-0.14 to 7.4+/-0.14, p < 0.001) improved significantly, total bilirubin concentrations (1.12+/-0.95 to 3.04+/-3.79 mg/dL, p = 0.001) increased after AVP. There were no differences in the haemodynamic or laboratory response to AVP between survivors and non-survivors. In this study, advanced cardiovascular failure that was unresponsive to standard therapy could be reversed successfully with supplementary AVP infusion in >90% of patients surviving cardiac arrest.
Resumo:
10.1002/hlca.19980810512.abs The synthesis of the Fmoc-protected amino acid 2 is presented. First attempts of amide-bond formation to the homodimer 4 in solution showed only poor coupling yields indicative for the low reactivity of the amino and carboxy groups in the building blocks 1 and 2, respectively (Scheme 1). Best coupling yields were found using dicyclohexylcarbodiimide (DCC) without any additive. The oligomerization of building block 2 adopting the Fmoc ((9H-fluoren-9-ylmethoxy)carbonyl) solid-phase synthesis yielded a mixture of N-terminal-modified distamycin-NA derivatives. By combined HPLC and MALDI-TOF-MS analysis, the N-terminal functional groups could be identified as acetamide and N,N-dimethylformamidine functions, arising from coupling of the N-terminus of the growing chain with residual AcOH or DCC-activated solvent DMF. An improved preparation of building block 2 and coupling protocol led to the prevention of the N-terminal acetylation. However, ‘amidination’ could not be circumvented. A thus isolated tetramer of 2, containing a lysine unit at the C-terminus and a N,N-dimethylformamidine-modified N-terminus, not unexpectedly, showed no complementary base pairing to DNA and RNA, as determined by standard UV-melting-curve analysis.