4 resultados para resonant states

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm−1 resolution in a supersonic jet. The electronic origin at 32 252 cm−1 exhibits methyl torsional subbands that originate from the 0A′′1 (l = 0) and 1E ″ (l = ±1) torsional levels. These and further torsional bands that appear up to 000+230 cm−1 allow to fit the threefold (V 3) barriers of the torsional potentials as ∣∣V′′3∣∣=50 cm−1 in the S 0 and ∣∣V′3∣∣=126 cm−1 in the S 1 state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V′′3=20 cm−1 and V′3=115 cm−1. The 000 rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis 1ππ* excitation. The residual 25% c-axis polarization may indicate coupling of the 1ππ* to the close-lying 1 nπ* state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated 1 nπ oscillator strength is only 6% of that of the 1ππ* transition. The 1ππ* vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm−1. The methyl torsion and the low-frequency out-of-plane ν′1 and ν′2 vibrations are strongly coupled in the 1ππ* state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the 1ππ* spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys.134, 114307 (2011)]. From the Lorentzian broadening needed to fit the 000 contour of 9M-2AP, the 1ππ* lifetime is τ ⩾ 120 ps, reflecting a rapid nonradiative transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observe the weak S 0 → S 2 transitions of the T-shaped benzene dimers (Bz)2 and (Bz-d 6)2 about 250 cm−1 and 220 cm−1 above their respective S 0 → S 1 electronic origins using two-color resonant two-photon ionization spectroscopy. Spin-component scaled (SCS) second-order approximate coupled-cluster (CC2) calculations predict that for the tipped T-shaped geometry, the S 0 → S 2 electronic oscillator strength f el (S 2) is ∼10 times smaller than f el (S 1) and the S 2 state lies ∼240 cm−1 above S 1, in excellent agreement with experiment. The S 0 → S 1 (ππ ∗) transition is mainly localized on the “stem” benzene, with a minor stem → cap charge-transfer contribution; the S 0 → S 2 transition is mainly localized on the “cap” benzene. The orbitals, electronic oscillator strengths f el (S 1) and f el (S 2), and transition frequencies depend strongly on the tipping angle ω between the two Bz moieties. The SCS-CC2 calculated S 1 and S 2 excitation energies at different T-shaped, stacked-parallel and parallel-displaced stationary points of the (Bz)2 ground-state surface allow to construct approximate S 1 and S 2 potential energy surfaces and reveal their relation to the “excimer” states at the stacked-parallel geometry. The f el (S 1) and f el (S 2) transition dipole moments at the C 2v -symmetric T-shape, parallel-displaced and stacked-parallel geometries are either zero or ∼10 times smaller than at the tipped T-shaped geometry. This unusual property of the S 0 → S 1 and S 0 → S 2 transition-dipole moment surfaces of (Bz)2 restricts its observation by electronic spectroscopy to the tipped and tilted T-shaped geometries; the other ground-state geometries are impossible or extremely difficult to observe. The S 0 → S 1/S 2 spectra of (Bz)2 are compared to those of imidazole ⋅ (Bz)2, which has a rigid triangular structure with a tilted (Bz)2 subunit. The S 0 → S 1/ S 2 transitions of imidazole-(benzene)2 lie at similar energies as those of (Bz)2, confirming our assignment of the (Bz)2 S 0 → S 2 transition.