3 resultados para repetitive DNA

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fasciola hepatica, also called the large liver fluke, is a trematode which can infect most mammals. Monitoring the infection rate of snails, which function as intermediate hosts and harbour larval stages of F. hepatica, is an important component of epidemiological studies on fascioliasis. For this purpose, DNA probes were generated which can be used for the detection of F. hepatica larvae in snails. Four highly repetitive DNA fragments were cloned in a plasmid vector and tested by Southern blot hybridization to the DNA of various trematodes for specificity and sensitivity. The probes Fhr-I, Fhr-II and Fhr-III hybridized only to F. hepatica DNA. Fhr-IV contained ribosomal RNA gene sequences and cross-hybridize with the DNA from various other trematode species. Squash blot analysis showed that the different probes were able to detect the parasite larvae in trematode-infected snails even as isolated single larvae. No signals were obtained in squash blots of uninfected snails. Probes Fhr-I, Fhr-II and Fhr-III are thus useful specific tools for studying the epidemiology of fascioliasis. The probe Fhr-IV, because of its broader spectrum, can be used to detect the larvae of a wide range of trematode species of waterbirds, which are the causative agents of swimmer's itch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Repetitive DNA sequences present in the genome of Dicrocoelium dendriticum were identified by hybridization of genomic DNA that had been digested with different restriction enzymes with 32P-labeled genomic D. dendriticum DNA. DNA fragments containing repetitive sequences were isolated from PstI-digested D. dendriticum DNA and were subcloned into a plasmid vector. Plasmids containing repetitive sequences were identified by colony hybridization. One of these plasmids, designated Ddr-IV, was isolated and used as a probe in further studies. Ddr-IV is specific for D. dendriticum since it does not hybridize to DNA isolated from other trematodes. In addition, Ddr-IV was capable of detecting D. dendriticum metacercariae in ants (Formica cunicularia, F. rufibarbis, and Lasius sp.), which act as second intermediate hosts in the parasite's life cycle. Since metacercariae constitute the infectious stage of the parasite for grazing animals, Ddr-IV will provide a useful tool for epidemiology studies of dicrocoeliosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the "Beijing" sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive.