10 resultados para renal denervation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES This study sought to determine the vascular anatomical eligibility for catheter-based renal artery denervation (RDN) in hypertensive patients. BACKGROUND Arterial hypertension is the leading cardiovascular risk factor for stroke and mortality globally. Despite substantial advances in drug-based treatment, many patients do not achieve target blood pressure levels. To improve the number of controlled patients, novel procedure- and device-based strategies have been developed. RDN is among the most promising novel techniques. However, there are few data on the vascular anatomical eligibility. METHODS We retrospectively analyzed 941 consecutive hypertensive patients undergoing coronary angiography and selective renal artery angiography between January 1, 2010, and May 31, 2012. Additional renal arteries were divided into 2 groups: hilar (accessory) and polar (aberrant) arteries. Anatomical eligibility for RDN was defined according to the current guidelines: absence of renal artery stenosis, renal artery diameter ≥4 mm, renal artery length ≥20 mm, and only 1 principal renal artery. RESULTS A total of 934 hypertensive patients were evaluable. The prevalence of renal artery stenosis was 10% (n = 90). Of the remaining 844 patients without renal artery stenosis, 727 (86%) had nonresistant hypertension and 117 (14%) had resistant hypertension; 62 (53%) of the resistant hypertensive and 381 (52%) of the nonresistant hypertensive patients were anatomically eligible for sympathetic RDN. CONCLUSIONS The vascular anatomical eligibility criteria of the current guidelines are a major limiting factor for the utilization of RDN as a therapeutic option. Development of new devices and/or techniques may significantly increase the number of candidates for these promising therapeutic options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcatheter (or percutaneous) renal denervation is a novel technique developed for the treatment of resistant hypertension. So far, only one randomised controlled trial has been published, which has shown a reduction of office blood pressure. The Swiss Society of Hypertension, the Swiss Society of Cardiology, The Swiss Society of Angiology and the Swiss Society of Interventional Radiology decided to establish recommendations to practicing physicians and specialists for good clinical practice. The eligibility of patients for transcatheter renal denervation needs (1.) confirmation of truly resistant hypertension, (2.) exclusion of secondary forms of hypertension, (3.) a multidisciplinary decision confirming the eligibility, (4.) facilities that guarantee procedural safety and (5.) a long-term follow-up of the patients, if possible in cooperation with a hypertension specialist. These steps are essential until long-term data on safety and efficacy are available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reef aorta is a rare form of calcifying atherosclerosis typically involving the supra and juxtarenal aorta. P atients classically present with refractory hypertension, intermittent claudication and abdominal angina. The treatment is either surgical via transaortic endarterectomy or through transferal endovascular stentgraft placement. Here we describe the case of a 45yearold female patient infected with human immuno deficiency virus, with resistant hypertension, lower limb and abdominal claudication, who was successfully treated with endovascular stent placement. We f urther provide a brief overview of the disease characteristics and treatment options.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED This study aimed to assess the safety and effectiveness of renal denervation using the Symplicity system in real-world patients with uncontrolled hypertension (NCT01534299). The Global SYMPLICITY Registry is a prospective, open-label, multicenter registry. Office and 24-hour ambulatory blood pressures (BPs) were measured. Change from baseline to 6 months was analyzed for all patients and for subgroups based on baseline office systolic BP, diabetic status, and renal function; a cohort with severe hypertension (office systolic pressure, ≥160 mm Hg; 24-hour systolic pressure, ≥135 mm Hg; and ≥3 antihypertensive medication classes) was also included. The analysis included protocol-defined safety events. Six-month outcomes for 998 patients, including 323 in the severe hypertension cohort, are reported. Mean baseline office systolic BP was 163.5±24.0 mm Hg for all patients and 179.3±16.5 mm Hg for the severe cohort; the corresponding baseline 24-hour mean systolic BPs were 151.5±17.0 and 159.0±15.6 mm Hg. At 6 months, the changes in office and 24-hour systolic BPs were -11.6±25.3 and -6.6±18.0 mm Hg for all patients (P<0.001 for both) and -20.3±22.8 and -8.9±16.9 mm Hg for those with severe hypertension (P<0.001 for both). Renal denervation was associated with low rates of adverse events. After the procedure through 6 months, there was 1 new renal artery stenosis >70% and 5 cases of hospitalization for a hypertensive emergency. In clinical practice, renal denervation resulted in significant reductions in office and 24-hour BPs with a favorable safety profile. Greater BP-lowering effects occurred in patients with higher baseline pressures. CLINICAL TRIAL REGISTRATION URL: www.clinicaltrials.gov. Unique identifier: NCT01534299.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Secondary hypertension refers to arterial hypertension due to an identifiable cause and affects ∼5-10% of the general hypertensive population. Because secondary forms are rare and work up is time-consuming and expensive, only patients with clinical suspicion should be screened. In recent years, some new aspects gained importance regarding this screening. In particular, increasing evidence suggests that 24 h ambulatory blood pressure (BP) monitoring plays a central role in the work up of patients with suspected secondary hypertension. Moreover, obstructive sleep apnoea has been identified as one of the most frequent causes. Finally, the introduction of catheter-based renal denervation for the treatment of patients with resistant hypertension has dramatically increased the interest and the number of patients evaluated for renal artery stenosis. We review the clinical clues of the most common causes of secondary hypertension. Specific recommendations are given as to evaluation and treatment of various forms of secondary hypertension. Despite appropriate therapy or even removal of the secondary cause, BP rarely ever returns to normal with long-term follow-up. Such residue hypertension indicates either that some patients with secondary hypertension also have concomitant essential hypertension or that irreversible vascular remodelling has taken place. Thus, in patients with potentially reversible causes of hypertension, early detection and treatment are important to minimize/prevent irreversible changes in the vasculature and target organs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

But de l’étude L’effet antihypertenseur de la dénervation rénale chez les patients hypertendus s’explique partiellement par une augmentation de la natriurèse tubulaire. Pour étudier une contribution possible du système kallikréine-kinines (SKK) à cette natriurèse dans le rat, nous avons dosé dans le plasma et dans les tissus l’activité de la kallikréine (AK) et la concentration de la bradykinine (BK). Méthodes Pour AK, nous avons adapté et validé un essai enzymatique qui libère la para-nitroaniline à partir du tripeptide H-D-Pro-Phe-Arg-pNA ; les coefficients de variation (CV) intra-essai et inter-essai étaient inférieurs à 8 % pour AK plasmatique et tissulaire (plasma n = 6 et 13, tissu n = 4). La linéarité d’une série de dilutions confirmait la spécificité de l’essai. Le dosage de BK tissulaire se basait sur une méthode établie pour le plasma : tissus étaient homogénéisés et BK extraite et isolée par éthanol et HPLC, et finalement quantifiée par radio-immunoessai. Les CV intra- et inter-essai pour BK étaient 18 % dans le plasma (n = 8 et n = 35) et inférieurs à 16 % dans différents tissus (n = 5–8). Résultats Chez le rat mâle Wistar (n = 3), la BK plasmatique était de 8,2 ± 6,6 fmol/mL (M ± SD) et la BK tissulaire (fmol/g) variait, pour les 14 organes testés, de 14 ± 3 pour le cerveau à 521 ± 315 pour la glande sous-maxillaire. Six jours après dénervation rénale gauche, la BK rénale gauche (89 ± 9) n’était pas différente comparée à la BK rénale droite (75 ± 23). De même, l’AK était identique dans les deux reins (gauche 18,0 ± 1,5, droit 15,8 ± 1,4 μkat/g). Conclusion Un effet éventuel de la dénervation rénale unilatéral sur le SKK rénal devrait donc être bilatéral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Treatment-resistant hypertension (TRH) affects between 3 and 30% of hypertensive patients, and its presence is associated with increased cardiovascular morbidity and mortality. Until recently, the interest on these patients has been limited, because providing care for them is difficult and often frustrating. However, the arrival of new treatment options [i.e. catheter-based renal denervation (RDN) and baroreceptor stimulation] has revitalized the interest in this topic. The very promising results of the initial uncontrolled studies on the blood pressure (BP)-lowering effect of RDN in TRH seemed to suggest that this intervention might represent an easy solution for a complex problem. However, subsequently, data from controlled studies have tempered the enthusiasm of the medical community (and the industry). Conversely, these new studies emphasized some seminal aspects on this topic: (i) the key role of 24 h ambulatory BP and arterial stiffness measurement to identify 'true' resistant patients; (ii) the high prevalence of secondary hypertension among this population; and (iii) the difficulty to identify those patients who may profit from device-based interventions. Accordingly, for those patients with documented TRH, the guidelines suggest to refer them to a hypertension specialist/centre in order to perform adequate work-up and treatment strategies. The aim of this review is to provide guidance for the cardiologist on how to identify patients with TRH and elucidate the prevailing underlying pathophysiological mechanism(s), to define a strategy for the identification of patients with TRH who may benefit from device-based interventions and discuss results and limitations of these interventions, and finally to briefly summarize the different drug-based treatment strategies.