5 resultados para regioselective

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extracellular peroxygenase of Agrocybe aegerita catalyzed the H(2)O(2)-dependent hydroxylation of the multi-function beta-adrenergic blocker propranolol (1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol) and the non-steroidal anti-inflammatory drug diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid) to give the human drug metabolites 5-hydroxypropranolol (5-OHP) and 4'-hydroxydiclofenac (4'-OHD). The reactions proceeded regioselectively with high isomeric purity and gave the desired 5-OHP and 4'-OHD in yields up to 20% and 65%, respectively. (18)O-labeling experiments showed that the phenolic hydroxyl groups in 5-OHP and 4'-OHD originated from H(2)O(2), which establishes that the reaction is mechanistically a peroxygenation. Our results raise the possibility that fungal peroxygenases may be useful for versatile, cost-effective, and scalable syntheses of drug metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NSC686288 [aminoflavone (AF)], a candidate chemotherapeutic agent, possesses a unique antiproliferative profile against tumor cells. Metabolic bioactivation of AF by drug-metabolizing enzymes, especially CYP1A monooxygenases, has been implicated as an underlying mechanism for its selective cytotoxicity in several cell culture-based studies. However, in vivo metabolism of AF has not been investigated in detail. In this study, the structural identities of 13 AF metabolites (12 of which are novel) in mouse urine or from microsomal incubations, including three monohydroxy-AFs, two dihydroxy-AFs and their sulfate and glucuronide conjugates, as well as one N-glucuronide, were determined by accurate mass measurements and liquid chromatography-tandem mass spectrometry fragmentation patterns, and a comprehensive map of the AF metabolic pathways was constructed. Significant differences between wild-type and Cyp1a2-null mice, within the relative composition of urinary metabolites of AF, demonstrated that CYP1A2-mediated regioselective oxidation was a major contributor to the metabolism of AF. Comparisons between wild-type and CYP1A2-humanized mice further revealed interspecies differences in CYP1A2-mediated catalytic activity. Incubation of AF with liver microsomes from all three mouse lines and with pooled human liver microsomes confirmed the observations from urinary metabolite profiling. Results from enzyme kinetic analysis further indicated that in addition to CYP1A P450s, CYP2C P450s may also play some role in the metabolism of AF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the synthesis of (5 S )-5- C -butylthymidine ( 5a ), of the (5 S )-5- C -butyl- and the (5 S )-5- C -isopentyl derivatives 16a and 16b of 2-deoxy-5-methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin-5-al 1 , the alkyl chain at C(5) is introduced via Wittig chemistry to selectively yield the ( Z )-olefin derivatives 3a and 3b ( Scheme 2 ). The secondary OH function at C(5) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5 S )-configuration in high diastereoisomer purity (de=94%). The corresponding 2-deoxy-5-methylcytidine derivatives are obtained from the protected 5-alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields ( Scheme 3 ). Application of the same strategy to the purine nucleoside 2-deoxyadenine to obtain 5- C -butyl-2-deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride-based reducing agents ( Scheme 4 ).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various corphinoid model systems bearing a methyl group at the position C-20 have been found to undergo regioselective chemical -methylation at the ligand periphery, mimicking enzymic -methylation occurring in vitamin-B biosynthesis.