99 resultados para regenerative tissue matrix
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
No single processing technique is capable of optimally preserving each and all of the structural entities of cartilaginous tissue. Hence, the choice of methodology must necessarily be governed by the nature of the component that is targeted for analysis, for example, fibrillar collagens or proteoglycans within the extracellular matrix, or the chondrocytes themselves. This article affords an insight into the pitfalls that are to be encountered when implementing the available techniques and how best to circumvent them. Adult articular cartilage is taken as a representative pars pro toto of the different bodily types. In mammals, this layer of tissue is a component of the synovial joints, wherein it fulfills crucial and diverse biomechanical functions. The biomechanical functions of articular cartilage have their structural and molecular correlates. During the natural course of postnatal development and after the onset of pathological disease processes, such as osteoarthritis, the tissue undergoes structural changes which are intimately reflected in biomechanical modulations. The fine structural intricacies that subserve the changes in tissue function can be accurately assessed only if they are faithfully preserved at the molecular level. For this reason, a careful consideration of the tissue-processing technique is indispensable. Since, as aforementioned, no single methodological tool is capable of optimally preserving all constituents, the approach must be pre-selected with a targeted structure in view. Guidance in this choice is offered.
Resumo:
A derivative (EMD) of enamel matrix proteins (EMPs) is used for periodontal regeneration because EMPs are believed to induce the formation of acellular extrinsic fiber cementum (AEFC). Other reports, however, indicate that EMPs have osteogenic potential. The aim of this study was to characterize the nature of the tissue that forms on the root surface following application of EMD. Ten human teeth affected by periodontitis and scheduled for extraction were treated with EMD. Four to six weeks later, they were extracted and processed for analysis by light microscopy and transmission electron microscopy. Immunocytochemistry with antibodies against bone sialoprotein (BSP) and osteopontin (OPN) was performed to determine the mineralization pattern. The newly formed tissues on the root were thick and contained embedded cells. Small mineralization foci were regularly seen, and large organic matrix patches were occasionally seen, but a distinct mineralization front was lacking. While labeling for BSP was always associated with small mineralization foci and large matrix patches, OPN labeling was seen inconsistently. It is concluded that tissues resembling either cellular intrinsic fiber cementum or a type of bone were observed. The mineralization pattern mostly resembled that found in bone, except for a few areas that exhibited a hitherto undescribed mineralization pattern.
Resumo:
The purpose of this study is to compare the healing of deep, non-contained intrabony defects (i.e., with a ?80% 1-wall component and a residual 2- to 3-wall component in the most apical part) treated with either an enamel matrix derivative (EMD) or guided tissue regeneration (GTR) after 12 months.
Resumo:
BACKGROUND: There are still limited data on the outcomes of regenerative periodontal surgery using a combination of an enamel matrix protein derivative (EMD) and autogenous bone (AB). AIM: To evaluate the healing of deep intrabony defects treated with either a combination EMD+AB or EMD alone. MATERIALS AND METHODS: Forty patients with advanced chronic periodontitis, with one deep intrabony defect, were randomly treated with either EMD+AB (test) or EMD (control). Clinical assessments were performed at baseline and at 1 year after treatment. The primary outcome variable was relative attachment level (RAL). RESULTS: Healing was uneventful in all patients. The test sites showed a reduction in the mean probing pocket depth (PPD) of 5.6 +/- 0.9 mm (p<0.001), a gain in the mean RAL of 4.2 +/- 1.1 mm (p<0.001) and a gain in the mean probing bone level (PBL) of 3.9 +/- 1.0 mm (p<0.001). The control group displayed a mean PPD reduction of 4.6 +/- 0.4 mm (p<0.001), a mean RAL gain of 3.4 +/- 0.8 mm (p<0.001) and a mean PBL gain of 2.8 +/- 0.8 mm (p<0.001). RAL gains of > or =4 mm were measured in 90% of the test defects and in 55% of the controls. PBL gains of > or =4 mm were obtained in 85% of the test defects and in 25% of the control ones. The test treatment resulted in statistically higher PPD reductions, RAL gains and PBL gains compared with the control (p<0.01). CONCLUSIONS: Within their limits, the present results indicate that: (i) at 1 year after surgery, both therapies resulted in statistically significant clinical improvements compared with baseline and (ii) although the combination of EMD+AB resulted in statistically significant higher soft and hard tissue improvements compared with treatment with EMD, the clinical relevance of this finding is unclear.
Resumo:
In cartilage repair, bioregenerative approaches using tissue engineering techniques have tried to achieve a close resemblance to hyaline cartilage, which might be visualized using advanced magnetic resonance imaging.
Resumo:
The self-regeneration capacity of articular cartilage is limited, due to its avascular and aneural nature. Loaded explants and cell cultures demonstrated that chondrocyte metabolism can be regulated via physiologic loading. However, the explicit ranges of mechanical stimuli that correspond to favourable metabolic response associated with extracellular matrix (ECM) synthesis are elusive. Unsystematic protocols lacking this knowledge produce inconsistent results. This study aims to determine the intrinsic ranges of physical stimuli that increase ECM synthesis and simultaneously inhibit nitric oxide (NO) production in chondrocyte-agarose constructs, by numerically re-evaluating the experiments performed by Tsuang et al. (2008). Twelve loading patterns were simulated with poro-elastic finite element models in ABAQUS. Pressure on solid matrix, von Mises stress, maximum principle stress and pore pressure were selected as intrinsic mechanical stimuli. Their development rates and magnitudes at the steady state of cyclic loading were calculated with MATLAB at the construct level. Concurrent increase in glycosaminoglycan and collagen was observed at 2300 Pa pressure and 40 Pa/s pressure rate. Between 0-1500 Pa and 0-40 Pa/s, NO production was consistently positive with respect to controls, whereas ECM synthesis was negative in the same range. A linear correlation was found between pressure rate and NO production (R = 0.77). Stress states identified in this study are generic and could be used to develop predictive algorithms for matrix production in agarose-chondrocyte constructs of arbitrary shape, size and agarose concentration. They could also be helpful to increase the efficacy of loading protocols for avascular tissue engineering. Copyright (c) 2010 John Wiley \& Sons, Ltd.
Resumo:
OBJECTIVES: To histologically assess the effectiveness of a porcine-derived collagen matrix (CM) and a subepithelial connective tissue graft (CTG) for the coverage of single mucosal recessions at osseointegrated dental implants. MATERIALS AND METHODS: Chronic-type mucosal Miller Class I-like recessions (mean clinical defect height: 0.67 ± 0.33-1.16 ± 0.19 mm) were established at the buccal aspect of titanium implants with platform switch in six beagle dogs. The defects were randomly allocated to either (1) coronally advanced flap surgery (CAF) + CM, (2) CAF + CTG or (3) CAF alone. At 12 weeks, histomorphometrical measurements were made (e.g.) between the implant shoulder (IS) and the mucosal margin (PM) and IS and the outer contour of the adjacent soft tissue (mucosal thickness [MT]). RESULTS: All treatment procedures investigated were associated with an almost complete soft tissue coverage of the defect area (i.e. coronal positioning of PM relative to IS). Mean IS-PM and MT values tended to be increased in both CAF + CM (1.04 ± 0.74 mm/0.71 ± 0.55 mm) and CAF + CTG (0.88 ± 1.23 mm/0.62 ± 0.66 mm) groups when compared with CAF (0.16 ± 0.28 mm/0.34 ± 0.23 mm) alone. These differences, however, did not reach statistical significance. CONCLUSIONS: Within the limits of this pilot study, it was concluded that all treatment procedures investigated were effective in covering soft tissue recessions at titanium implants.
Resumo:
Degree III furcation involvements were surgically created at four first molars in each of three monkeys. Following 6 weeks of healing, full-thickness flaps were elevated. Following 24% EDTA gel conditioning, the defects were treated with one of the following: (1) enamel matrix proteins (EMD), (2) guided tissue regeneration (GTR) or (3) a combination EMD and GTR. The control defects did not receive any treatment. After 5 months of healing, the animals were sacrificed. Three 8 μm thick histological central sections, 100 μm apart, were used for histomorphometric analysis in six zones of each tooth either within the furcation area or on the pristine external surface of the root. In all specimens, new cementum with inserting collagen fibres was formed. Following GTR or GTR + EMD, cementum was formed up to and including the furcation fornix indicating complete regeneration on the defect periphery. Periodontal ligament fibres were less in all four modalities compared to pristine tissues. In the teeth treated with GTR and GTR + EMD a higher volume of bone and periodontal ligament tissues was observed compared to EMD. After 5 months of healing, regenerated tissues presented quantitative differences from the pristine tissues. In the two modalities where GTR alone or combined with EMD was used, the regenerated tissues differed in quantity from the EMD-treated sites.
Resumo:
BACKGROUND/AIM: Because the pericapillary basement membrane in skeletal muscles of patients with chronic critical limb ischemia (CLI) is thickened, we determined the expression patterns of genes involved in collagen metabolism, using samples from 9 CLI patients, 4 patients with acute limb ischemia and 4 healthy controls. METHODS: Gene array analysis, quantitative RT-PCR and semiquantitative grading of immunohistochemical reactivity were performed to determine mRNA/cDNA and protein concentrations. RESULTS: In CLI patients compared to controls, cDNA levels of matrix metalloproteinase (MMP)-9 and MMP-19 were higher, collagen type IV chains A1 and A2, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-2 were similar and MMP-2 were lower. On the protein level, MMP-2, MMP-9, MMP-19 and TIMP-1 were more abundantly expressed. In skeletal muscles from patients with acute limb ischemia, cDNA and protein levels of MMP-9, MMP-19, collagen type IV chains, TIMP-1 and TIMP-2 were high. MMP-2 was elevated at the protein but decreased on the cDNA level. CONCLUSION: Expression of basement membrane components in skeletal muscles of CLI and acute limb ischemia patients is altered, possibly contributing to the pathogenesis of peripheral arterial disease.
Resumo:
BACKGROUND: Despite a large body of clinical and histological data demonstrating beneficial effects of enamel matrix proteins (EMPs) for regenerative periodontal therapy, it is less clear how the available biological data can explain the mechanisms underlying the supportive effects of EMPs. OBJECTIVE: To analyse all available biological data of EMPs at the cellular and molecular levels that are relevant in the context of periodontal wound healing and tissue formation. METHODS: A stringent systematic approach was applied using the key words "enamel matrix proteins" OR "enamel matrix derivative" OR "emdogain" OR "amelogenin". The literature search was performed separately for epithelial cells, gingival fibroblasts, periodontal ligament cells, cementoblasts, osteogenic/chondrogenic/bone marrow cells, wound healing, and bacteria. RESULTS: A total of 103 papers met the inclusion criteria. EMPs affect many different cell types. Overall, the available data show that EMPs have effects on: (1) cell attachment, spreading, and chemotaxis; (2) cell proliferation and survival; (3) expression of transcription factors; (4) expression of growth factors, cytokines, extracellular matrix constituents, and other macromolecules; and (5) expression of molecules involved in the regulation of bone remodelling. CONCLUSION: All together, the data analysis provides strong evidence for EMPs to support wound healing and new periodontal tissue formation.
Resumo:
OBJECTIVE: The aim of the present pilot study is to show initial results of a multimodal approach using clinical scoring, morphological magnetic resonance imaging (MRI) and biochemical T2-relaxation and diffusion-weighted imaging (DWI) in their ability to assess differences between cartilage repair tissue after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT). METHOD: Twenty patients were cross-sectionally evaluated at different post-operative intervals from 12 to 63 months after MFX and 12-59 months after MACT. The two groups were matched by age (MFX: 36.0+/-10.4 years; MACT: 35.1+/-7.7 years) and post-operative interval (MFX: 32.6+/-16.7 months; MACT: 31.7+/-18.3 months). After clinical evaluation using the Lysholm score, 3T-MRI was performed obtaining the MR observation of cartilage repair tissue (MOCART) score as well as T2-mapping and DWI for multi-parametric MRI. Quantitative T2-relaxation was achieved using a multi-echo spin-echo sequence; semi-quantitative diffusion-quotient (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) was prepared by a partially balanced, steady-state gradient-echo pulse sequence. RESULTS: No differences in Lysholm (P=0.420) or MOCART (P=0.209) score were observed between MFX and MACT. T2-mapping showed lower T2 values after MFX compared to MACT (P=0.039). DWI distinguished between healthy cartilage and cartilage repair tissue in both procedures (MFX: P=0.001; MACT: P=0.007). Correlations were found between the Lysholm and the MOCART score (Pearson: 0.484; P=0.031), between the Lysholm score and DWI (Pearson:-0.557; P=0.011) and a trend between the Lysholm score and T2 (Person: 0.304; P=0.193). CONCLUSION: Using T2-mapping and DWI, additional information could be gained compared to clinical scoring or morphological MRI. In combination clinical, MR-morphological and MR-biochemical parameters can be seen as a promising multimodal tool in the follow-up of cartilage repair.
Resumo:
The purpose of this article was to evaluate the potential of in vivo zonal T2-mapping as a noninvasive tool in the longitudinal visualization of cartilage repair tissue maturation after matrix-associated autologous chondrocyte transplantation (MACT). Fifteen patients were treated with MACT and evaluated cross-sectionally, with a baseline MRI at a follow-up of 19.7 +/- 12.1 months after cartilage transplantation surgery of the knee. In the same 15 patients, 12 months later (31.7 +/- 12.0 months after surgery), a longitudinal 1-year follow-up MRI was obtained. MRI was performed on a 3 Tesla MR scanner; morphological evaluation was performed using a double-echo steady-state sequence; T2 maps were calculated from a multiecho, spin-echo sequence. Quantitative mean (full-thickness) and zonal (deep and superficial) T2 values were calculated in the cartilage repair area and in control cartilage sites. A statistical analysis of variance was performed. Full-tickness T2 values showed no significant difference between sites of healthy cartilage and cartilage repair tissue (p < 0.05). Using zonal T2 evaluation, healthy cartilage showed a significant increase from the deep to superficial cartilage layers (p < 0.05). Cartilage repair tissue after MACT showed no significant zonal increase from deep to superficial cartilage areas during baseline MRI (p > 0.05); however, during the 1-year follow-up, a significant zonal stratification could be observed (p < 0.05). Morphological evaluation showed no significant difference between the baseline and the 1-year follow-up MRI. T2 mapping seems to be more sensitive in revealing changes in the repair tissue compared to morphological MRI. In vivo zonal T2 assessment may be sensitive enough to characterize the maturation of cartilage repair tissue.
Resumo:
BACKGROUND A newly developed collagen matrix (CM) of porcine origin has been shown to represent a potential alternative to palatal connective tissue grafts (CTG) for the treatment of single Miller Class I and II gingival recessions when used in conjunction with a coronally advanced flap (CAF). However, at present it remains unknown to what extent CM may represent a valuable alternative to CTG in the treatment of Miller Class I and II multiple adjacent gingival recessions (MAGR). The aim of this study was to compare the clinical outcomes following treatment of Miller Class I and II MAGR using the modified coronally advanced tunnel technique (MCAT) in conjunction with either CM or CTG. METHODS Twenty-two patients with a total of 156 Miller Class I and II gingival recessions were included in this study. Recessions were randomly treated according to a split-mouth design by means of MCAT + CM (test) or MCAT + CTG (control). The following measurements were recorded at baseline (i.e. prior to surgery) and at 12 months: Gingival Recession Depth (GRD), Probing Pocket Depth (PD), Clinical Attachment Level (CAL), Keratinized Tissue Width (KTW), Gingival Recession Width (GRW) and Gingival Thickness (GT). GT was measured 3-mm apical to the gingival margin. Patient acceptance was recorded using a Visual Analogue Scale (VAS). The primary outcome variable was Complete Root Coverage (CRC), secondary outcomes were Mean Root Coverage (MRC), change in KTW, GT, patient acceptance and duration of surgery. RESULTS Healing was uneventful in both groups. No adverse reactions at any of the sites were observed. At 12 months, both treatments resulted in statistically significant improvements of CRC, MRC, KTW and GT compared with baseline (p < 0.05). CRC was found at 42% of test sites and at 85% of control sites respectively (p < 0.05). MRC measured 71 ± 21% mm at test sites versus 90 ± 18% mm at control sites (p < 0.05). Mean KTW measured 2.4 ± 0.7 mm at test sites versus 2.7 ± 0.8 mm at control sites (p > 0.05). At test sites, GT values changed from 0.8 ± 0.2 to 1.0 ± 0.3 mm, and at control sites from 0.8 ± 0.3 to 1.3 ± 0.4 mm (p < 0.05). Duration of surgery and patient morbidity was statistically significantly lower in the test compared with the control group respectively (p < 0.05). CONCLUSIONS The present findings indicate that the use of CM may represent an alternative to CTG by reducing surgical time and patient morbidity, but yielded lower CRC than CTG in the treatment of Miller Class I and II MAGR when used in conjunction with MCAT.
Resumo:
Progressive interstitial fibrosis and tubular atrophy (IF/TA) is a leading cause of chronic allograft dysfunction. Increased extracellular matrix remodeling regulated by matrix metalloproteases (MMPs) and their inhibitors (TIMPs) has been implicated in the development of IF/TA. The aim of this study was to investigate whether urinary/serum MMPs/TIMPs correlate with subclinical IF/TA detected in surveillance biopsies within the first 6months post-transplant. We measured eight different MMPs/TIMPs simultaneously in urine and serum samples from patients classified as normal histology (n=15), IF/TA 1 (n=15) and IF/TA 2-3 (n=10). There was no difference in urinary MMPs/TIMPs among the three groups, and only 1/8 serum MMPs/TIMPs (i.e. MMP-1) was significantly elevated in biopsies with IF/TA 2-3 (p=0.01). In addition, urinary/serum MMPs/TIMPs were not different between surveillance biopsies demonstrating an early development of IF/TA (i.e. delta IF/TA≥1 compared to a previous biopsy obtained three months before; n=11) and stable grade of IF/TA (i.e. delta IF/TA=0; n=20). Next, we investigated whether urinary/serum MMP/TIMP levels are elevated during acute subclinical tubulitis in surveillance biopsies obtained within the first 6months post-transplant (n=25). Compared to biopsies with normal histology, serum MMPs/TIMPs were not different; however, all urinary MMP/TIMP levels were numerically higher during subclinical tubulitis (MMP-1, MMP-7, TIMP-1 with p≤0.04). We conclude that urinary/serum MMPs/TIMPs do hardly correlate with existing or early developing IF/TA in surveillance biopsies obtained within the first 6months post-transplant. This could be explained by the dynamic process of extracellular matrix remodeling, which seems to be active during acute tubulo-interstitial injury/inflammation, but not in quiescent IF/TA.