54 resultados para recombinant allophycoeyanin
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.
Resumo:
To compare the efficacy of pars plana vitrectomy (ppV) with intravitreal injection of recombinant tissue plasminogen activator (rtPA) and gas versus ppV with subretinal injection of rtPA and intravitreal injection of gas.
Resumo:
recombinant activated factor VII (rFVIIa) is used off-label for massive bleeding. There is no convincing evidence of the benefits of this practice and the minimal effective dose is unknown. The aim of the study was to evaluate our in-house guideline recommending a low dose of 60 μg/kg for off-label use of rFVIIa.
Resumo:
Severe deficiency of the von Willebrand factor (VWF)-cleaving protease ADAMTS13 as observed in acquired thrombotic thrombocytopenic purpura (TTP) is caused by inhibitory and non-inhibitory autoantibodies directed against the protease. Current treatment with plasma exchange is considered to remove circulating antibodies and to concurrently replenish the deficient enzyme.
Resumo:
The in vitro production of recombinant protein molecules has fostered a tremendous interest in their clinical application for treatment and support of cancer patients. Therapeutic proteins include monoclonal antibodies, interferons, and haematopoietic growth factors. Clinically established monoclonal antibodies include rituximab (targeting CD20-positive B-cell lymphomas), trastuzumab (active in HER-2 breast and gastric cancer), and bevacizumab (blocking tumor-induced angiogenesis through blockade of vascular-endothelial growth factor and its receptor). Interferons have lost much of their initial appeal, since equally or more effective treatments with more pleasant side effects have become available, for example in chronic myelogenous leukaemia or hairy cell leukaemia. The value of recombinant growth factors, notably granulocyte colony stimulating factor (G-CSF) and erythropoietin is rather in the field of supportive care than in targeted anti-cancer therapy. Adequately powered clinical phase III trials are essential to estimate the true therapeutic impact of these expensive compounds, with appropriate selection of clinically relevant endpoints and sufficient follow-up. Monoclonal antibodies, interferons, and growth factors must also, and increasingly so, be subjected to close scrutiny by appropriate cost-effectiveness analyses to ensure that their use results in good value for money. With these caveats and under the condition of their judicious clinical use, recombinant proteins have greatly enriched the therapeutic armamentarium in clinical oncology, and their importance is likely to grow even further.
Resumo:
Abstract Objective: To evaluate the effectiveness of human recombinant activated factor VII (rhFVIIa, NovoSeven) in avoiding hysterectomy postpartum in the management of severe postpartum hemorrhage (PPH). Methods: We performed a prospective cohort study at our university tertiary care center. Patients with severe post partum hemorrhage (blood loss >2000 mL) and failed medical and uterus-preserving surgical management, were treated with intravenous bolus administration of rhVIIa. Main outcome measures were cessation of bleeding, postpartum hysterectomy and thromboembolic events. Results: In 20/22 patients included, PPH was caused primarily by uterine atony, including 7 (32%) with additional lower genital tract lesion; in two women, it was due to pathologic placentation (placenta increta, 9%). One case of amniotic fluid embolism and one woman with uterine inversion were included. Recombinant hFVIIa was successful in stopping the PPH and in preventing a hysterectomy in 20/22 women (91%). The remaining two patients with persistent bleeding despite rhFVIIa treatment, who underwent postpartum hysterectomy, had placenta increta. No thromboembolic event was noticed. Conclusions: This study describes the largest single center series of rhFVIIa treatment for fertility preservation in severe postpartum hemorrhage published to date. Our data suggest that administration of rhFVIIa is effective in avoiding postpartum hysterectomy after conservative medical and surgical measures have failed. Although randomized studies are lacking, rhFVIIa should be considered as a second-line therapeutic option of life-threatening postpartal bleeding, in particular if preservation of fertility is warranted and hysterectomy is to be avoided.
Resumo:
Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).
Resumo:
The effects of nanogel encapsulation of recombinant NcPDI (recNcPDI) following vaccination of mice by intranasal or intraperitoneal routes and challenge infection with Neospora caninum tachyzoites were investigated. Nanogels were chitosan based, with an alginate or alginate-mannose surface. None of the mice receiving recNcPDI intraperitoneal (i.p.) (without nanogels) survived, whereas intranasal (i.n.) application protected 9 of 10 mice from disease. Association of recNcPDI with nanogels improved survival of i.p. vaccinated mice, but nanogels without recNcPDI gave similar protection levels. When nanogels were inoculated via the i.n. route, 80% of the mice were protected. Association of recNcPDI with the alginate-coated nanogels protected all mice against disease. Quantification of the cerebral parasite burden showed a significant reduction of parasite numbers in most experimental groups vaccinated i.n., except those vaccinated with alginate-mannose nanogels with or without recNcPDI. For i.p. vaccinated groups, no significant differences in cerebral infection densities were measured, but there was a reduction in the groups vaccinated with recNcPDI associated with both types of nanogels. Analysis of the immune responses of infected mice indicated that association of recNcPDI with nanogels altered the patterns of cytokine mRNA expression profiles, but had no major impact on the antibody subtype responses. Nevertheless, this did not necessarily relate to the protection.
Resumo:
Interleukin 4 (IL-4) plays a central role in immune responses to parasites and allergens. IL-4 drives the differentiation of naive T cells into Th2 cells and regulates immunoglobulin class switching to IgE.Little is known about the role of IL-4 in canine allergies and parasite infections. Most of the information derives from measurement of IL-4 mRNA expression in dog tissues, but detection of IL-4 protein has been difficult so far, probably due to low sensitivity of available methods. Antibodies (Ab) specific for canine IL-4 are available from various sources, but these Ab have been produced against recombinant Escherichia coli-expressed canine IL-4 and there is only limited information on their reactivities with native canine IL-4. Therefore, in the present study, we tested six available canine IL-4-specific Ab for their reactivities with recombinant canine IL-4 expressed in E. coli (rec.IL-4) or in mammalian cells (mam.IL-4), and with supernatants from stimulated canine peripheral blood mononuclear cells (PBMCs) using several detection methods, including Western blotting, ELISA, cytokine bead assay, and intracellular IL-4 staining. Additionally, we tested a bovine IL-4-specific antibody that has been previously shown to cross-react with canine IL-4. All tested Ab except anti-bovine IL-4 reacted with rec.IL-4, and most of them reacted with mam.IL-4. However, only the cytokine bead assay was sensitive enough to allow the detection of IL-4 in supernatants of canine PBMCs.
Resumo:
Recombinant NcPDI(recNcPDI), NcROP2(recNcROP2), and NcMAG1(recNcMAG1) were expressed in Escherichia coli and purified, and evaluated as potential vaccine candidates by employing the C57Bl/6 mouse cerebral infection model. Intraperitoneal application of these proteins suspended in saponin adjuvants lead to protection against disease in 50% and 70% of mice vaccinated with recNcMAG1 and recNcROP2, respectively, while only 20% of mice vaccinated with recNcPDI remained without clinical signs. In contrast, a 90% protection rate was achieved following intra-nasal vaccination with recNcPDI emulsified in cholera toxin. Only 1 mouse vaccinated intra-nasally with recNcMAG1 survived the challenge infection, and protection achieved with intra-nasally applied recNcROP2 was at 60%. Determination of cerebral parasite burdens by real-time PCR showed that these were significantly reduced only in recNcROP2-vaccinated animals (following intraperitoneal and intra-nasal application) and in recNcPDI-vaccinated mice (intra-nasal application only). Quantification of viable tachyzoites in brain tissue of intra-nasally vaccinated mice showed that immunization with recNcPDI resulted in significantly decreased numbers of live parasites. These data show that, besides the nature of the antigen, the protective effect of vaccination also depends largely on the route of antigen delivery. In the case of recNcPDI, the intra-nasal route provides a platform to generate a highly protective immune response.
Resumo:
The major route of transmission of Neospora caninum in cattle is transplacentally from an infected cow to its progeny. Therefore, a vaccine should be able to prevent both the horizontal transmission from contaminated food or water and the vertical transmission. We have previously shown that a chimeric vaccine composed of predicted immunogenic epitopes of NcMIC3, NcMIC1 and NcROP2 (recNcMIC3-1-R) significantly reduced the cerebral infection in BALB/c mice. In this study, mice were first vaccinated, then mated and pregnant mice were challenged with 2×10(6)N. caninum tachyzoites at day 7-9 of pregnancy. Partial protection was only observed in the mice vaccinated with a tachyzoite crude protein extract but no protection against vertical transmission or cerebral infection in the dams was observed in the group vaccinated with recNcMIC3-1-R. Serological and cytokine analysis showed an overall lower cytokine level in sera associated with a dominant IL-4 expression and high IgG1 titers. Thus, the Th2-type immune response observed in the pregnant mice was not protective against experimental neosporosis, in contrary to the mixed Th1-/Th2-type immune response observed in the non-pregnant mouse model. These results demonstrate that the immunomodulation that occurs during pregnancy was not favorable for the protection against N. caninum infection conferred by vaccination with recNcMIC3-1-R.