2 resultados para rat strain

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Episcleral vein cauterization (EVC) is used in rats to generate a glaucoma model with high intraocular pressure (IOP). The long-term retinal damage in this glaucoma model, however, has not been accurately quantified. We report the location and amount of retinal ganglion cell (RGC) damage caused by (EVC) induced IOP elevation in two rat strains. IOP was raised in one eye of Wistar (N = 5) and Brown-Norway(B-N)(N = 7) rats by EVC and monitored monthly until IOP in contralateral eyes equalized at 5 months post-surgery. Animals were maintained for 3.5-4.5 additional months. B-N rats (N = 7) that had no EVC served as controls for this strain. Scotopic flash ERGs were recorded at baseline and just prior to euthanasia. Automated counts of all retrogradely labeled RGCs in retinal flat-mounts were determined and compared between contralateral eyes. RGC density maps were constructed and RGC size distribution was determined. Oscillatory potentials in the group of eyes which had elevated IOP were decreased at the time of euthanasia, when IOP had returned to normal. The group of normal B-N rats had similar RGC counts between contralateral eyes. In the experimental group the mean number of RGCs was not significantly different between control and experimental eyes, but 1 of 5 Wistar and 2 of 7 B-N experimental eyes had at least 30% fewer RGCs than contralateral control eyes. Total retinal area in B-N experimental eyes was higher compared to contralateral eyes. Cumulative IOP exposure of the experimental eyes was modestly correlated with RGC loss while oscillatory potentials appeared to be inversely related to RGC loss. In retinas with extensive (> 30% RGC loss) but not complete damage, smaller cells were preserved better than larger ones. The above results indicate that RGC loss in both Wistar and B-N strains is variable after a prolonged elevation of IOP via EVC. Such variability despite equivalent IOP levels and ERG abnormalities, suggests unknown factors that can protect IOP-stressed RGCs. Identification and enhancement of such factors could prove useful for glaucoma therapy.