2 resultados para range-separation parameter

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegenerative diseases affect the cerebellum of numerous dog breeds. Although subjective, magnetic resonance (MR) imaging has been used to detect cerebellar atrophy in these diseases, but there are few data available on the normal size range of the cerebellum relative to other brain regions. The purpose of this study was to determine whether the size of the cerebellum maintains a consistent ratio with other brain regions in different ages and breeds of normal dogs and to define a measurement that can be used to identify cerebellar atrophy on MR images. Images from 52 normal and 13 dogs with cerebellar degenerative diseases were obtained. Volume and mid-sagittal cross-sectional area of the forebrain, brainstem, and cerebellum were calculated for each normal dog and compared between different breeds and ages as absolute and relative values. The ratio of the cerebellum to total brain and of the brainstem to cerebellum mid-sagittal cross-sectional area was compared between normal and affected dogs and the sensitivity and specificity of these ratios at distinguishing normal from affected dogs was calculated. The percentage of the brain occupied by the cerebellum in diverse dog breeds between 1 and 5 years of age was not significantly different, and cerebellar size did not change with increasing age. Using a cut off of 89%, the ratio between the brainstem and cerebellum mid-sagittal cross-sectional area could be used successfully to differentiate affected from unaffected dogs with a sensitivity and specificity of 100%, making this ratio an effective tool for identifying cerebellar atrophy on MR images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.