44 resultados para pyrimidine derivative
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A new nucleoside designed to enhance triplex stability has been synthesised in 15 steps starting from sugar 2. This pathway contains the sugar derivative 9 which is a useful intermediate for the introduction of other natural and unnatural bases into the 2'-aminoethoxy nucleoside containing scaffold
Resumo:
To investigate the influence of the pyrimidine 2-keto group on selection of nucleotides for incorporation into DNA by polymerases, we have prepared two C nucleoside triphosphates that are analogues of dCTP and dTTP, namely 2-amino-5-(2'-deoxy-beta-d-ribofuranosyl)pyridine-5'-triphosphate (d*CTP) and 5-(2'-deoxy- beta-d-ribofuranosyl)-3-methyl-2-pyridone-5'-triphosphate (d*TTP) respectively. Both proved strongly inhibitory to PCR catalysed by Taq polymerase; d*TTP rather more so than d*CTP. In primer extension experiments conducted with either Taq polymerase or the Klenow fragment of Escherichia coli DNA polymerase I, both nucleotides failed to substitute for their natural pyrimidine counterparts. Neither derivative was incorporated as a chain terminator. Their capacity to inhibit DNA polymerase activity may well result from incompatibility with the correctly folded form of the polymerase enzyme needed to stabilize the transition state and catalyse phosphodiester bond formation.
Resumo:
NCX-1000 (2(acetyloxy) benzoic acid-3(nitrooxymethyl)phenyl ester) is an nitric oxide (NO)-releasing derivative of ursodeoxycholic acid (UDCA), which showed selective vasodilatory effect on intrahepatic circulation in animal models of cirrhosis. This study was aimed at testing the efficacy and tolerability of this compound in patients with cirrhosis and portal hypertension.
Resumo:
The purpose of this study is to compare the healing of deep, non-contained intrabony defects (i.e., with a ?80% 1-wall component and a residual 2- to 3-wall component in the most apical part) treated with either an enamel matrix derivative (EMD) or guided tissue regeneration (GTR) after 12 months.
Resumo:
BACKGROUND: There are still limited data on the outcomes of regenerative periodontal surgery using a combination of an enamel matrix protein derivative (EMD) and autogenous bone (AB). AIM: To evaluate the healing of deep intrabony defects treated with either a combination EMD+AB or EMD alone. MATERIALS AND METHODS: Forty patients with advanced chronic periodontitis, with one deep intrabony defect, were randomly treated with either EMD+AB (test) or EMD (control). Clinical assessments were performed at baseline and at 1 year after treatment. The primary outcome variable was relative attachment level (RAL). RESULTS: Healing was uneventful in all patients. The test sites showed a reduction in the mean probing pocket depth (PPD) of 5.6 +/- 0.9 mm (p<0.001), a gain in the mean RAL of 4.2 +/- 1.1 mm (p<0.001) and a gain in the mean probing bone level (PBL) of 3.9 +/- 1.0 mm (p<0.001). The control group displayed a mean PPD reduction of 4.6 +/- 0.4 mm (p<0.001), a mean RAL gain of 3.4 +/- 0.8 mm (p<0.001) and a mean PBL gain of 2.8 +/- 0.8 mm (p<0.001). RAL gains of > or =4 mm were measured in 90% of the test defects and in 55% of the controls. PBL gains of > or =4 mm were obtained in 85% of the test defects and in 25% of the control ones. The test treatment resulted in statistically higher PPD reductions, RAL gains and PBL gains compared with the control (p<0.01). CONCLUSIONS: Within their limits, the present results indicate that: (i) at 1 year after surgery, both therapies resulted in statistically significant clinical improvements compared with baseline and (ii) although the combination of EMD+AB resulted in statistically significant higher soft and hard tissue improvements compared with treatment with EMD, the clinical relevance of this finding is unclear.
Resumo:
The quassinoid analogue NBT-272 has been reported to inhibit MYC, thus warranting a further effort 7to better understand its preclinical properties in models of embryonal tumors (ET), a family of childhood malignancies sharing relevant biological and genetic features such as deregulated expression of MYC oncogenes. In our study, NBT-272 displayed a strong antiproliferative activity in vitro that resulted from the combination of diverse biological effects, ranging from G(1)/S arrest of the cell cycle to apoptosis and autophagy. The compound prevented the full activation of both eukaryotic translation initiation factor 4E (eIF4E) and its binding protein 4EBP-1, regulating cap-dependent protein translation. Interestingly, all responses induced by NBT-272 in ET could be attributed to interference with 2 main proproliferative signaling pathways, that is, the AKT and the MEK/extracellular signal-regulated kinase pathways. These findings also suggested that the depleting effect of NBT-272 on MYC protein expression occurred via indirect mechanisms, rather than selective inhibition. Finally, the ability of NBT-272 to arrest tumor growth in a xenograft model of neuroblastoma plays a role in the strong antitumor activity of this compound, both in vitro and in vivo, with its potential to target cell-survival pathways that are relevant for the development and progression of ET.
Resumo:
Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole or directly on the bone-forming cells. In addition, it is not known if the presentation of PTH by adding the amino acid sequence Arg-Gly-Asp (RGD) is essential for its osteopromotive effect. Local delivery of a bioactive substance at the right time and in the right concentration often constitutes a major challenge. Polyethylene glycol-based hydrogel (PEG) is a degradable vehicle developed for delivery of bioactive proteins. To enhance the mechanical stability of the PEG-bioactive substance complex, an osteoconductive bone substitute material is often needed.
Resumo:
The aim of this study was to evaluate the 4-year clinical outcomes following regenerative surgery in intrabony defects with either EMD + BCP or EMD. Twenty-four patients with advanced chronic periodontitis, displaying one-, two-, or three-walled intrabony defect with a probing depth of at least 6 mm, were randomly treated with either EMD + BCP (test) or EMD alone (control). The following clinical parameters were evaluated at baseline, at 1 year and at 4 years after regenerative surgery: plaque index, gingival index, bleeding on probing, probing depth, gingival recession, and clinical attachment level (CAL). The primary outcome variable was CAL. No differences in any of the investigated parameters were observed at baseline between the two groups. The test group demonstrated a mean CAL change from from 10.8 ± 1.6 mm to 7.4 ± 1.6 mm (p < 0.001) and to 7.6 ± 1.7 mm (p < 0.001) at 1 and 4 years, respectively. In the control group, mean CAL changed from 10.4 ± 1.3 at baseline to 6.9 ± 1.0 mm (p < 0.001) at 1 year and 7.2 ± 1.2 mm (p < 0.001) at 4 years. At 4 years, two defects in the test group and three defects in the control group have lost 1 mm of the CAL gained at 1 year. Compared to baseline, at 4 years, a CAL gain of ≥3 mm was measured in 67% of the defects (i.e., in 8 out of 12) in the test group and in 75% of the defects (i.e., in 9 out of 12) in the control group. There were no statistically significant differences in any of the investigated parameters at 1 and at 4 years between the two groups. Within their limits, the present results indicate that: (a) the clinical improvements obtained with both treatments can be maintained over a period of 4 years, and (b) in two- and three-walled intrabony defects, the addition of BCP did not additionally improve the outcomes obtained with EMD alone. In two- and three-walled intrabony defects, the combination of EMD + BCP did not show any advantage over the use of EMD alone.
Resumo:
1.--The immunomodulating agent FTY720 is a substrate for the sphingosine kinase and the phosphorylated form is able to bind to sphingosine 1-phosphate (S1P) receptors. In this study, we show that exposure of renal mesangial cells to phospho-FTY720 leads to a rapid and transient activation of several protein kinase cascades, including the mitogen- and stress-activated protein kinases. The nonphosphorylated FTY720 also increased MAPK phosphorylation, but with a reduced potency and a more delayed time course. In addition, phospho-FTY720 and FTY720 are able to increase phosphorylation of Smad proteins which are classical members of the transforming growth factor-beta (TGF-beta) signalling device, thus suggesting a crosstalk between FTY720 and TGF-beta signalling. 2.--Pretreatment with the S1P(3) receptor antagonist suramin inhibits FTY720 and phospho-FTY720-induced Smad phosphorylation, whereas pertussis toxin pretreatment, which blocks G(i/0) proteins, has no effect on Smad phosphorylation. 3.--Since TGF-beta is a potent profibrotic cytokine in mesangial cells and upregulates the connective tissue growth factor (CTGF) and collagen as important hallmarks in the fibrotic sequelae, we investigated whether FTY720 and phospho-FTY720 are able to mimic these effects of TGF-beta. Indeed, FTY720 and phospho-FTY720 markedly upregulate CTGF and collagen type IV protein expressions. In addition, the tissue inhibitor of metalloproteinase-1 is transcriptionally activated by FTY720, whereas cytokine-induced matrix metalloproteinase-9 is down-regulated by FTY720. 4.--Depletion of the TGF-beta receptor type II by the siRNA transfection technique blocks not only Smad phosphorylation but also CTGF upregulation. Similarly, Smad-4 depletion by siRNA transfection also abrogates CTGF upregulation induced by FTY720 and phospho-FTY720. 5.--In summary, our data show that FTY720 and phospho-FTY720 not only activate the Smad signalling cascade in mesangial cells, but also upregulate the expression of CTGF and collagen. These findings suggest that FTY720 may have additional effects besides the established immunomodulatory action and, importantly, a profibrotic activity has to be considered in future experimental approaches.
Resumo:
PURPOSE: We aimed at designing and developing a novel bombesin analogue, DOTA-PEG(4)-BN(7-14) (DOTA-PESIN), with the goal of labelling it with (67/68)Ga and (177)Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. METHODS: The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG(4)). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. RESULTS: [Ga(III)/Lu(III)]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [(67)Ga/(177)Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [(67)Ga/(177)Lu]-DOTA-PESIN. [(67)Ga/(177)Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [(68)Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the (177)Lu-labelled peptide remained in the tumour even 3 days post injection. CONCLUSION: The newly designed ligands have high potential with regard to PET and SPECT imaging with (68/67)Ga and targeted radionuclide therapy with (177)Lu.