34 resultados para purinergic receptor blocking agent

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system involvement is a rare and serious complication of Behçet's disease (BD). Herein, we describe a patient with an atypical central lesion, who experienced progressive hypesthesia of the right arm and sensory loss of the trigeminal nerve together with intense headache. A repeated biopsy was necessary to conclusively establish the diagnosis of BD. Therapy with infusions of infliximab led to a remarkable full remission. TNFα-blocking therapy was successfully replaced by azathioprine. The present well-illustrated case demonstrates the difficulty of establishing the diagnosis of BD with central nervous system involvement, the dramatic benefit of short given TNF-α-blocking agent, and the long-term remission with azathioprin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The importance of the costimulatory molecules CD28 and CTLA-4 in the pathologic mechanism of rheumatoid arthritis (RA) has been demonstrated by genetic associations and the successful clinical application of CTLA-4Ig for the treatment of RA. This study was undertaken to investigate the role of the CTLA-4/CD28 axis in the local application of CTLA-4Ig in the synovial fluid (SF) of RA patients. METHODS: Quantitative polymerase chain reaction was used to analyze the expression of proinflammatory and antiinflammatory cytokines in ex vivo fluorescence-activated cell sorted CTLA-4+ and CTLA-4- T helper cells from the peripheral blood and SF of RA patients. T helper cells were also analyzed for cytokine expression in vitro after the blockade of CTLA-4 by anti-CTLA-4 Fab fragments or of B7 (CD80/CD86) molecules by CTLA-4Ig. RESULTS: CTLA-4+ T helper cells were unambiguously present in the SF of all RA patients examined, and they expressed increased amounts of interferon-γ (IFNγ), interleukin-17 (IL-17), and IL-10 as compared to CTLA-4- T helper cells. The selective blockade of CTLA-4 in T helper cells from the SF in vitro led to increased levels of IFNγ, IL-2, and IL-17. The concomitant blockade of CD28 and CTLA-4 in T helper cells from RA SF by CTLA-4Ig in vitro resulted in reduced levels of the proinflammatory cytokines IFNγ and IL-2 and increased levels of the antiinflammatory cytokines IL-10 and transforming growth factor β. CONCLUSION: Our ex vivo and in vitro results demonstrate that the CTLA-4/CD28 axis constitutes a drug target for not only the systemic, but potentially also the local, application of the costimulation blocking agent CTLA-4Ig for the treatment of RA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4(+) T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4(+) T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+) T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+) T cells and forkhead box P3 (FoxP3)(+) regulatory T (Treg) cells. IFN-γ produced mainly by CD4(+) T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Through overexpression and aberrant activation in many human tumors, the IGF system plays a key role in tumor development and tumor cell proliferation. Different strategies targeting IGF-I receptor (IGFI-R) have been developed, and recent studies demonstrated that combined treatments with cytostatic drugs enhance the potency of anti-IGFI-R therapies. Objective: The objective of the study was to examine the IGFI-R expression status in neuroendocrine tumors of the gastroenteropancreatic system (GEP-NETs) in comparison with healthy tissues and use potential overexpression as a target for novel anti-IGFI-R immunoliposomes. Experimental Design: A human tumor tissue array and samples from different normal tissues were investigated by immunohistochemistry. An IGFI-R antagonistic antibody (1H7) was coupled to the surface of sterically stabilized liposomes loaded with doxorubicin. Cell lines from different tumor entities were investigated for liposomal association studies in vitro. For in vivo experiments, neuroendocrine tumor xenografts were used for evaluation of pharmacokinetic and therapeutic properties of the novel compound. Results: Immunohistochemistry revealed significant IGFI-R overexpression in all investigated GEP-NETs (n = 59; staining index, 229.1 +/- 3.1%) in comparison with normal tissues (115.7 +/- 3.7%). Furthermore, anti-IGFI-R immunoliposomes displayed specific tumor cell association (44.2 +/- 1.6% vs. IgG liposomes, 0.8 +/- 0.3%; P < 0.0001) and internalization in human neuroendocrine tumor cells in vitro and superior antitumor efficacy in vivo (life span 31.5 +/- 2.2 d vs. untreated control, 19 +/- 0.6, P = 0.008). Conclusion: IGFI-R overexpression seems to be a common characteristic of otherwise heterogenous NETs. Novel anti-IGFI-R immunoliposomes have been developed and successfully tested in a preclinical model for human GEP-NETs. Moreover in vitro experiments indicate that usage of this agent could also present a promising approach for other tumor entities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In patients with advanced estrogen-dependent type I endometrial cancer (EC), pharmacological treatment with progestins or antiestrogens is recommended, but primary and secondary resistance are common. The aim of our study was to investigate single-agent and dual-agent therapeutic strategies in estrogen receptor-positive human EC cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite improvements in prevention and management of colorectal cancer (CRC), uncontrolled tumor growth with metastatic spread to distant organs remains an important clinical concern. Genetic deletion of CD39, the dominant vascular and immune cell ectonucleotidase, has been shown to delay tumor growth and blunt angiogenesis in mouse models of melanoma, lung and colonic malignancy. Here, we tested the influence of CD39 on CRC tumor progression and metastasis by investigating orthotopic transplanted and metastatic cancer models in wild-type BALB/c, human CD39 transgenic and CD39 deficient mice. We also investigated CD39 and P2 receptor expression patterns in human CRC biopsies. Murine CD39 was expressed by endothelium, stromal and mononuclear cells infiltrating the experimental MC-26 tumors. In the primary CRC model, volumes of tumors in the subserosa of the colon and/or rectum did not differ amongst the treatment groups at day 10, albeit these tumors rarely metastasized to the liver. In the dissemination model, MC-26 cell line-derived hepatic metastases grew significantly faster in CD39 over-expressing transgenics, when compared to CD39 deficient mice. Murine P2Y2 was significantly elevated at both mRNA and protein levels, within the larger liver metastases obtained from CD39 transgenic mice where changes in P2X7 levels were also noted. In clinical samples, lower levels of CD39 mRNA in malignant CRC tissues appeared associated with longer duration of survival and could be linked to less invasive tumors. The modulatory effects of CD39 on tumor dissemination and differential levels of CD39, P2Y2 and P2X7 expression in tumors suggest involvement of purinergic signalling in these processes. Our studies also suggest potential roles for purinergic-based therapies in clinical CRC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N,N'-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB(2) inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A-C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB(2) inverse agonists with the highest CB(2) binding affinity (CB(2)K(i) of 22-85 nM, EC(50) of 4-28 nM) and best selectivity (CB(1)/CB(2) of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 μM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(E)-β-caryophyllene (BCP) is a natural sesquiterpene found in many essential oils of spice (best known for contributing to the spiciness of black pepper) and food plants with recognized anti-inflammatory properties. Recently it was shown that BCP is a natural agonist of endogenous cannabinoid 2 (CB(2)) receptors, which are expressed in immune cells and mediate anti-inflammatory effects. In this study we aimed to test the effects of BCP in a clinically relevant murine model of nephropathy (induced by the widely used antineoplastic drug cisplatin) in which the tubular injury is largely dependent on inflammation and oxidative/nitrative stress. β-caryophyllene dose-dependently ameliorated cisplatin-induced kidney dysfunction, morphological damage, and renal inflammatory response (chemokines MCP-1 and MIP-2, cytokines TNF-α and IL-1β, adhesion molecule ICAM-1, and neutrophil and macrophage infiltration). It also markedly mitigated oxidative/nitrative stress (NOX-2 and NOX-4 expression, 4-HNE and 3-NT content) and cell death. The protective effects of BCP against biochemical and histological markers of nephropathy were absent in CB(2) knockout mice. Thus, BCP may be an excellent therapeutic agent to prevent cisplatin-induced nephrotoxicity through a CB(2) receptor-dependent pathway. Given the excellent safety profile of BCP in humans it has tremendous therapeutic potential in a multitude of diseases associated with inflammation and oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: We aimed at designing and developing a novel bombesin analogue, DOTA-PEG(4)-BN(7-14) (DOTA-PESIN), with the goal of labelling it with (67/68)Ga and (177)Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. METHODS: The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG(4)). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. RESULTS: [Ga(III)/Lu(III)]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [(67)Ga/(177)Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [(67)Ga/(177)Lu]-DOTA-PESIN. [(67)Ga/(177)Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [(68)Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the (177)Lu-labelled peptide remained in the tumour even 3 days post injection. CONCLUSION: The newly designed ligands have high potential with regard to PET and SPECT imaging with (68/67)Ga and targeted radionuclide therapy with (177)Lu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available beta-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using (111)In-labelled derivatives. METHODS: Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using (111)In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the (nat)In-metallated compounds were determined by receptor autoradiography using (125)I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the (111)In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. RESULTS: IC(50) values of the (nat)In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC(50) between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All (111)In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All (111)In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to (111)In-DTPA-minigastrin 0 (0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. CONCLUSIONS: Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic chelator-bearing derivatives make them potentially suitable for clinical purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS: We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS: Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS: These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.