4 resultados para pump-probe technique
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction: Diagnosing arrhythmias by conventional Holter-ECG can be cumbersome because of artifacts, skin irritation and poor P-waves. In contrast, esophageal electrocardiography (eECG) is promising due to the anatomic relationship of the esophagus to the atria and its favorable bioelectric properties. Methods used: In an ambulant setting, we recorded eECGs from 10 volunteers with a novel, highly-miniaturized eECG recorder that is worn discretely behind the ear (1.5×1.8×5cm, 22grams). The device continuously records two eECG leads during 3 days with 500Hz sampling frequency and 24-bit resolution. Results: Mean ± SD recording time was 21.7±19.6 hours (max. 60 hours). Test persons were not limited in daily activities (e.g. eating, speaking) and only complained mild discomfort during probe insertion, which subsided later on. During 99.8% of time, the recorder acquired signals appropriate for further analysis. In unfiltered data, QRS complexes and P-waves were identifiable during >98% of time. P waves had higher amplitudes as compared to surface ECG (0.71 ± 0.42mV vs. 0.16 ± 0.03mV, p = 0.004). No complications occurred. Conclusion: Ambulatory eECG recording is safe, well tolerated and promising due to excellent P-wave detection, overcoming some limitations of conventional Holter ECG.
Resumo:
The time-course of dark adaptation provides valuable insights into the function and interactions between the rod and cone pathways in the retina. Here we describe a technique that uses the flash electroretinogram (ERG) response to probe the functional integrity of the cone and rod pathways during the dynamic process of dark adaptation in the mouse. Retinal sensitivity was estimated from the stimulus intensity required to maintain a 30 microV criterion b-wave response during a 40 min period of dark adaptation. When tracked in this manner, dark adaptation functions in WT mice depended upon the bleaching effects of initial background adaptation conditions. Altered dark adaptation functions, commensurate with the functional deficit were recorded in pigmented mice that lacked cone function (Gnat2 ( cplf3 )) and in WT mice injected with a toxin, sodium iodate (NaIO(3)), which targets the retinal pigment epithelium and also has downstream effects on photoreceptors. These data demonstrate that this adaptive tracking procedure measures retinal sensitivity and the contributions of the rod and/or cone pathways during dark adaptation in both WT control and mutant mice.
Resumo:
The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety
Resumo:
BACKGROUND & AIMS: Refractory ascites (RA) affects 10% of patients with advanced cirrhosis and ascites. Usual therapy includes large volume paracentesis, and in selected patients, a transjugular portosystemic shunt (TIPS). These therapies may be associated with increased morbidity: paracentesis may induce circulatory dysfunction and impair quality of life and TIPS may induce encephalopathy and is associated with increased mortality in patients with severe liver dysfunction. We present the results of a multicenter, non-randomized trial to assess the safety and efficacy of a new automated pump system for treatment of RA. METHODS: Forty patients at 9 centers (February 2010-June 2011) received an implanted pump for the automated removal of ascites from the peritoneal cavity into the bladder, from where it was eliminated through normal urination. Patients were followed-up for 6months. The primary study outcome was safety. Secondary outcomes included recurrence of tense ascites and pump performance. RESULTS: Surgical complications occurred early in the study and became less frequent. The pump system removed 90% of the ascites and significantly reduced the median number of large volume paracentesis per month [3.4 (range 1-6) vs. 0.2 (range 0-4); p <0.01]. Cirrhosis-related adverse events decreased along follow-up. CONCLUSIONS: The automated pump seems an efficacious tool to move out ascites from the peritoneal cavity to the bladder. Its safety is still moderate, but a broad use in different countries will improve the surgical technique as well as the medical surveillance. A prospective randomized clinical trial vs. large volume paracentesis is underway to confirm these preliminary results.