2 resultados para pulmonary administration

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Lung retrieval from non-heart-beating donors (NHBD) has been introduced into clinical practice successfully. However, because of potentially deleterious effects of warm ischemia on microvascular integrity, use of NHBD lungs is limited by short tolerable time periods before preservation. Recently, improvement of NHBD graft function was demonstrated by donor pre-treatment using aerosolized Ventavis (Schering Inc., Berlin, Germany). Currently, there is no information whether additional application of this approach in reperfusion can further optimize immediate graft function. MATERIAL AND METHODS: Asystolic pigs (n = 5/group) were ventilated for 180-min of warm ischemia (groups 1-3). In groups 2 and 3, 100 microg Ventavis were aerosolized over 30-min using an ultrasonic nebulizer (Optineb). Lungs were then retrogradely preserved with Perfadex and stored for 3-h. After left lung transplantation and contralateral lung exclusion, grafts were reperfused for 6-h. Only in group 3, another dose of 100 microg Ventavis was aerosolized during the first 30-min of reperfusion. Hemodynamics, pO2/FiO2 and dynamic compliance were monitored continuously and compared to controls. Intraalveolar edema was quantified stereologically, and extravascular-lung-water-index (EVLWI) was measured. Statistics comprised ANOVA analysis with repeated measurements. RESULTS: Dynamic compliance was significantly lower in both Ventavis groups, but additional administration did not result in further improvement. Oxygenation, pulmonary hemodynamics, EVLWI and intraalveolar edema formation were comparable between groups. CONCLUSIONS: Alveolar deposition of Ventavis in NHBD lungs before preservation significantly improves dynamic lung compliance and represents an important strategy for improvement of preservation quality and expansion of warm ischemic intervals. However, additional application of this method in early reperfusion is of no benefit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.