20 resultados para psychophysics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Does the word-superiority effect on letter discrimination result in a word-superiority effect on duration judgments? We examined this question in five experiments. In the first four experiments, we have demonstrated that (1) words shown for 32-80 msec were judged as presented longer than non-words shown for the same duration; (2) this word-superiority effect persists if the stimuli are shown for an objective duration of up to 250 msec; and (3) these effects can be extended to judgments of figure-ground contrast and letter size. These findings extend existing data on effects of processing fluency on perceptual judgments. In Experiment 5, we found that duration judgments were higher for words than for pronounceable nonwords, and duration judgments were higher for pronounceable non-words than for nonpronounceable nonwords. We discuss the implications of this finding for the discrepancy-attribution hypothesis.
Resumo:
Using a weighted up-down procedure, in each of eight conditions 28 participants compared durations of auditory (noise bursts) or visual (LED flashes) intervals; filled or unfilled with 3-ms markers; with or without feedback. Standards (Sts) were 100 and 1000 ms, and the ISI 900 ms. Intermixedly, presentation orders were St-Comparison (Co) and Co-St. TOEs were positive for St=100-ms and negative for St=1000 ms. Weber fractions (WFs, JND/St) were lowered by feedback. For visual-filled and visual-empty, WFs were highest for St=100 ms. For auditory-filled and visual-empty, St interacted with Order: lowest WFs occurred for St-Co with St=1000 ms, but for Co-St with St=100 ms. Lowest average WFs occurred with St-Co for visual-filled, but with Co-St for visual-empty. The results refute the generalization of better discrimination with St-Co than with Co-St (”type-B effect”), and support the notion of sensation weighting: flexibly differential impact weights of the compared durations in generating the response.
Resumo:
The present study was designed to investigate the influences of type of psychophysical task (two-alternative forced-choice [2AFC] and reminder tasks), type of interval (filled vs. empty), sensory modality (auditory vs. visual), and base duration (ranging from 100 through 1,000 ms) on performance on duration discrimination. All of these factors were systematically varied in an experiment comprising 192 participants. This approach allowed for obtaining information not only on the general (main) effect of each factor alone, but also on the functional interplay and mutual interactions of some or all of these factors combined. Temporal sensitivity was markedly higher for auditory than for visual intervals, as well as for the reminder relative to the 2AFC task. With regard to base duration, discrimination performance deteriorated with decreasing base durations for intervals below 400 ms, whereas longer intervals were not affected. No indication emerged that overall performance on duration discrimination was influenced by the type of interval, and only two significant interactions were apparent: Base Duration × Type of Interval and Base Duration × Sensory Modality. With filled intervals, the deteriorating effect of base duration was limited to very brief base durations, not exceeding 100 ms, whereas with empty intervals, temporal discriminability was also affected for the 200-ms base duration. Similarly, the performance decrement observed with visual relative to auditory intervals increased with decreasing base durations. These findings suggest that type of task, sensory modality, and base duration represent largely independent sources of variance for performance on duration discrimination that can be accounted for by distinct nontemporal mechanisms.
Resumo:
The most influential theoretical account in time psychophysics assumes the existence of a unitary internal clock based on neural counting. The distinct timing hypothesis, on the other hand, suggests an automatic timing mechanism for processing of durations in the sub-second range and a cognitively controlled timing mechanism for processing of durations in the range of seconds. Although several psychophysical approaches can be applied for identifying the internal structure of interval timing in the second and sub-second range, the existing data provide a puzzling picture of rather inconsistent results. In the present chapter, we introduce confirmatory factor analysis (CFA) to further elucidate the internal structure of interval timing performance in the sub-second and second range. More specifically, we investigated whether CFA would rather support the notion of a unitary timing mechanism or of distinct timing mechanisms underlying interval timing in the sub-second and second range, respectively. The assumption of two distinct timing mechanisms which are completely independent of each other was not supported by our data. The model assuming a unitary timing mechanism underlying interval timing in both the sub-second and second range fitted the empirical data much better. Eventually, we also tested a third model assuming two distinct, but functionally related mechanisms. The correlation between the two latent variables representing the hypothesized timing mechanisms was rather high and comparison of fit indices indicated that the assumption of two associated timing mechanisms described the observed data better than only one latent variable. Models are discussed in the light of the existing psychophysical and neurophysiological data.