16 resultados para provisioning
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Climate, land use and fire are strong determinants of plant diversity, potentially resulting in local extinctions, including rare endemic and economically valuable species. While climate and land use are decisive for vegetation composition and thus the species pool, fire disturbance can lead to landscape fragmentation, affecting the provisioning of important ecosystem services such as timber and raw natural resources. We use multi-proxy palaeoecological data with high taxonomic and temporal resolution across an environmental gradient to assess the long-term impact of major climate shifts, land use and fire disturbance on past vegetation openness and plant diversity (evenness and richness). Evenness of taxa is inferred by calculating the probability of interspecific encounter (PIE) of pollen and spores and species richness by palynological richness (PRI). To account for evenness distortions of PRI, we developed a new palaeodiversity measure, which is evenness-detrended palynological richness (DE-PRI). Reconstructed species richness increases from north to south regardless of time, mirroring the biodiversity increase across the gradient from temperate deciduous to subtropical evergreen vegetation. Climatic changes after the end of the last ice age contributed to biodiversity dynamics, usually by promoting species richness and evenness in response to warming. The data reveal that the promotion of diverse open-land ecosystems increased when human disturbance became determinant, while forests became less diverse. Our results imply that the today’s biodiversity has been shaped by anthropogenic forcing over the millennia. Future management strategies aiming at a successful conservation of biodiversity should therefore consider the millennia-lasting role of anthropogenic fire and human activities.
Resumo:
The natural regulation of the water cycle by tropical montane forests is an important ecosystem service. Within this chapter we focus on water balance and regulation of the water cycle. Differences of rainfall-runoff generation across scales change from a near-surface event water driven system in pristine rainforest-covered micro-catchments to a more groundwater pre-event water dominated one on the mesoscale. The highly dynamic discharges are often correlated with total suspended sediment loads. However, we also observed total suspended sediment peaks at times of low flow, indicating a decoupling of erosion and stream transport and a triggering of landslides not directly related to hydrological processes. We also summarize likely future trends of water-related ecosystem services and expect an increase in human use and benefits of fresh water use whereas changes in water regulation and water purification services remain unchanged on a high level.
Resumo:
The coevolution of parental investment and offspring solicitation is driven by partly different evolutionary interests of genes expressed in parents and their offspring. In species with biparental care, the outcome of this conflict ma!: be influenced by the sexual conflict over parental investment, Models for the resolution of such family conflicts have made so far untested assumptions about genetic variation and covariation in the parental resource provisioning response and the level of offspring solicitation. Using a combination of cross-fostering and begging playback experiments, we show that, in the great tit (Parus major), (i) the begging call intensity of nestlings depends on their common origin, suggesting genetic variation for this begging display, (ii) only mothers respond to begging calls by increased food provisioning, and (iii! the size of the parental response is positively related to the begging call intensity of nestlings in the maternal but not paternal line. This study indicates that genetic covariation, its differential expression in the maternal and paternal lines and/or early environmental and parental effects need to be taken into account when predicting the phenotypic outcome of the conflict over investment between genes expressed in each parent and the offspring. [References: 36]
Resumo:
Sibling and parente-offspring conflicts arise mainly over the amount and distribution of parental care, especially food. In altricial bird species where the young depend on parents for obtaining food, parents may control sibling competition by the choice of their respective provisioning locations. In great tits, the parents use fixed provisioning positions on the nest rim that are determined early in the breeding cycle and maintained until. edging. The two parents may choose positions that are close to each other, or far apart, and thereby increase or relax the pressure for optimal feeding positioning among nestlings. As an inspiration to this study we previously found that the two parents provide food from closer positions if the nest is infested by ectoparasites. Here, we tested the hypothesis that the parental choice of relative provisioning locations could be strategically used to control nestling competition. We forced parents to feed from either one or two provisioning locations and assessed the induced change in nestling movement, weight gain, and food distribution among siblings. We show that the angular distance between male and female locations influences the level of behavioural competition and affects nestling weight gain and food distribution. It is the first evidence for hole-nesting birds, where it was assumed that the nestling closest to the entrance hole was fed first, that the apparent choice of feeding positions by parents could be a way of controlling sibling competition and thereby also taking partial control over the outcome of parente-offspring conflict. (c) 2007 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
Manure scrapers are widely used in dairy cow loose-housing systems. In order to evaluate the effects of the scrapers on the cows, we assessed their impact on the animals' cardiac activity, feeding behaviour, and the behavioural reactions of cows confronted with different types of scrapers. In part I of the study, we measured cardiac activity (mean R–R interval and RMSSD, a parameter of heart-rate variability) whilst observing the behaviour of 29 focal cows on three farms during situations with and without active manure scrapers. Lower RMSSD values were observed during scraping events while cows were either lying, standing or walking in the alleyway, standing completely in the lying cubicle, or standing half in the lying cubicle (P=0.03), but only tended to differ while directly confronted with the scraper (P=0.06). This indicates that dairy cows experienced at least some mild stress during manure-scraping events. In part II, the feeding behaviour of 12 cows on each of two farms was recorded by means of a jaw-movement sensor and compared between situations with the manure-scraping event following forage provision either within or outside the main daily feeding period (i.e. within 1 or after 2 h from forage provisioning, respectively). The duration of night-time feeding (P=0.049) and the number of feeding bouts (P=0.036) were higher when a manure-scraping event took place within the main daily feeding period, indicating that the cows' feeding behaviour had been disturbed. In part III, we observed the cows' behaviour on 15 farms during eight manure scraping events per farm, where each of five farms had one of three different scraper types. We assessed the cows' immediate reactions when confronted with the scraper. In addition, we recorded the number of animals present in the alleyways before and after the manure-scraping events. The more cows that were present in the alleyways before the scraping event, the lower the proportion of cows showing direct behavioural reactions both with (P=0.017) and without (P=0.028) scraper contact, and the higher the number of cows that left the alleyways (P<0.001). Scraper type did not influence the proportion of cows showing behavioural reactions. In conclusion, our results show that dairy cows perceive the manure-scraping event negatively in some situations, that feeding behaviour may be disturbed when scrapers are active during the main feeding period, and that cows avoid the scraper during crowded situations.
Resumo:
The north-eastern escarpment of Madagascar has been labelled a global biodiversity hotspot due to its extremely high rates of endemic species which are heavily threatened by accelerated deforestation rates and landscape change. The traditional practice of shifting cultivation or "tavy" used by the majority of land users in this area to produce subsistence rice is commonly blamed for these threats. A wide range of stakeholders ranging from conservation to development agencies, and from the private to the public sector has therefore been involved in trying to find solutions to protect the remaining forest fragments and to increase agricultural production. Consequently, provisioning, regulating and socio-cultural services of this forest-mosaic landscape are fundamentally altered leading to trade-offs between them and consequently new winners and losers amongst the stakeholders at different scales. However, despite a growing amount of evidence from case studies analysing local changes, the regional dynamics of the landscape and their contribution to such trade-offs remain poorely understood. This study therefore aims at using generalised landscape units as a base for the assessment of multi-level stakeholder claims on ecosystem services to inform negotiation, planning and decision making at a meso-scale. The presented study applies a mixed-method approach combining remote sensing, GIS and socio-economic methods to reveal current landscape dynamics, their change over time and the corresponding ecosystem service trade-offs induced by diverse stakeholder claims on the regional level. In a first step a new regional land cover classification for three points in time (1995, 2005 and 2011) was conducted including agricultural classes characteristic for shifting cultivation systems. Secondly, a novel GIS approach, termed “landscape mosaics approach” originally developed to assess dynamics of shifting cultivation landscapes in Laos was applied. Through this approach generalised landscape mosaics were generated allowing for a better understanding of changes in land use intensities instead of land cover. As a next step we will try to use these landscape units as proxies to map provisioning and regulating ecosystem services throughout the region. Through the overlay with other regional background data such as accessibility and population density and information from a region-wide stakeholder analysis, multiscale trade-offs between different services will be highlighted. The trade-offs observed on the regional scale will then be validated through a socio-economic ground-truthing within selected sites at the local scale. We propose that such meso-scale knowledge is required by all stakeholders involved in decision making towards sustainable development of north-eastern Madagascar.
Resumo:
An interdisciplinary research unit consisting of 30 teams in the natural, economic and social sciences analyzed biodiversity and ecosystem services of a mountain rainforest ecosystem in the hotspot of the tropical Andes, with special reference to past, current and future environmental changes. The group assessed ecosystem services using data from ecological field and scenario-driven model experiments, and with the help of comparative field surveys of the natural forest and its anthropogenic replacement system for agriculture. The book offers insights into the impacts of environmental change on various service categories mentioned in the Millennium Ecosystem Assessment (2005): cultural, regulating, supporting and provisioning ecosystem services. Examples focus on biodiversity of plants and animals including trophic networks, and abiotic/biotic parameters such as soils, regional climate, water, nutrient and sediment cycles. The types of threats considered include land use and climate changes, as well as atmospheric fertilization. In terms of regulating and provisioning services, the emphasis is primarily on water regulation and supply as well as climate regulation and carbon sequestration. With regard to provisioning services, the synthesis of the book provides science-based recommendations for a sustainable land use portfolio including several options such as forestry, pasture management and the practices of indigenous peoples. In closing, the authors show how they integrated the local society by pursuing capacity building in compliance with the CBD-ABS (Convention on Biological Diversity - Access and Benefit Sharing), in the form of education and knowledge transfer for application.
Resumo:
Abstract Cloud computing service emerged as an essential component of the Enterprise {IT} infrastructure. Migration towards a full range and large-scale convergence of Cloud and network services has become the current trend for addressing requirements of the Cloud environment. Our approach takes the infrastructure as a service paradigm to build converged virtual infrastructures, which allow offering tailored performance and enable multi-tenancy over a common physical infrastructure. Thanks to virtualization, new exploitation activities of the physical infrastructures may arise for both transport network and Data Centres services. This approach makes network and Data Centres’ resources dedicated to Cloud Computing to converge on the same flexible and scalable level. The work presented here is based on the automation of the virtual infrastructure provisioning service. On top of the virtual infrastructures, a coordinated operation and control of the different resources is performed with the objective of automatically tailoring connectivity services to the Cloud service dynamics. Furthermore, in order to support elasticity of the Cloud services through the optical network, dynamic re-planning features have been provided to the virtual infrastructure service, which allows scaling up or down existing virtual infrastructures to optimize resource utilisation and dynamically adapt to users’ demands. Thus, the dynamic re-planning of the service becomes key component for the coordination of Cloud and optical network resource in an optimal way in terms of resource utilisation. The presented work is complemented with a use case of the virtual infrastructure service being adopted in a distributed Enterprise Information System, that scales up and down as a function of the application requests.
Resumo:
Since the origin of early Homo species during the Late Pliocene, interactions of humans with scavenging birds and mammals have changed in form through shifting ecological scenarios. How humans procured meat during the Quaternary Period changed from confrontational scavenging to hunting; shepherding of wild animals; and, eventually, intensive husbandry of domesticated animals. As humans evolved from carcass consumers to carcass providers, the overall relationship between humans and scavengers shifted from competition to facilitation. These changing interactions have translated into shifting provisioning (by signaling carcass location), regulating (e.g., by removing animal debris and controlling infectious diseases), and cultural ecosystem services (e.g., by favoring human language and social cooperation skills or, more recently, by enhancing ecotourism) provided by scavenging vertebrates. The continued survival of vultures and large mammalian scavengers alongside humans is now severely in jeopardy, threatening the loss of the numerous ecosystem services from which contemporary and future humans could benefit.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
Global change, especially land-use intensification, affects human well-being by impacting the deliv-ery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is amajor component of global change effects on multifunctionality in real-world ecosystems, as inexperimental ones, remains unclear. Therefore, we assessed biodiversity, functional compositionand 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We alsointroduce five multifunctionality measures in which ecosystem services were weighted according torealistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodi-versity loss and by changes to functional composition, were as strong as direct effects on average.Their strength varied with land-use objectives and regional context. Biodiversity loss explainedindirect effects in a region of intermediate productivity and was most damaging when land-useobjectives favoured supporting and cultural services. In contrast, functional composition shifts,towards fast-growing plant species, strongly increased provisioning services in more inherentlyunproductive grasslands.
Resumo:
Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.