50 resultados para protein phosphorylation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report is aimed at elucidating the effect of mannitol and cold treatments on P uptake and protein phosphorylation in Lemna minor plants. Duckweed p lants were incu bated in the presence of [32P]or [33P]Pi in half-strength phosphate deprived E-medium under constant light regime for 1.5 h. Total plant protein extracts (pellet and supernatant) were then prepared and subjected to IEF x SDS-PAGE. To analyse the effect of the stresses on P uptake and protein labelling, Lemna minor plants were preincubated with 0.1, 0.5 mol · L-1 mannitol and at 4°C respectively, for 4 hours, before adding labelled orthophosphate. The results show that the general protein phosphorylation (including LHCII) is related to the level of P uptake. Radioactive phosphate incorporation is stimulated by a low concentration of mannitol (0.1 mol · L-1) but reduced by 0.5 mol · L-1 mannitol and cold stress in planta. The labelling into proteins is affected neither when stresses were applied to the plants after incubation with labelled orthophosphate, nor after in vitro protein phosphorylation. This indicates that general protein kinase activities in vivo are strictly limited by P uptake. A marked accumulation of soluble hexoses (mainly sucrose, glucose, and fructose) is observed under imposed stress, suggesting that the inhibition of P uptake in response to hyperosmotic and cold stresses is mediated by sugar accumulation in situ. However, metabolisable sugars like glucose did not alter the entry of phosphate at concentrations of 0.5 mol · L-1, showing that the chemical nature of the osmoticum influences P uptake.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CYP17A1 plays a pivotal role in the biosynthesis of androgens in the adrenals and the gonads. Although this enzyme catalyzes two different reactions on one single active site, its specific activities are regulated independently. Although the 17alpha-hydroxylase activity is rather constant and regulated by gene expression, the 17,20-lyase activity varies significantly with the amount of cofactors or by protein phosphorylation. cAMP increases CYP17A1 expression, P450c17 phosphorylation, and androgen production. However, the exact mechanism(s) and the specific regulators of CYP17A1 remain unknown. Therefore, we studied the regulation of adrenal androgen biosynthesis in human adrenal H295R cells focusing on CYP17A1. We analyzed androgen production and P450c17 activities in H295R cells grown under normal and serum-free conditions and/or after stimulation with 8-bromoadenosine-cAMP. H295R cells grown in starvation medium produced more androgens and had decreased HSD3B2 expression and activity but increased P450c17-17,20-lyase activity and serine phosphorylation. Although starvation increased serine phosphorylation of P450c17 specifically, cAMP stimulation enhanced threonine phosphorylation exclusively. Time-course experiments revealed that a short cAMP stimulation augmented threonine phosphorylation of P450c17 but did not increase 17,20-lyase activity. By contrast, long cAMP stimulation increased androgen production through increased P450c17 activities by enhancing CYP17A1 gene expression. We conclude that serum withdrawal shifts steroidogenesis of H295R cells towards androgen production, providing a suitable model for detailed studies of androgen regulation. In addition, our study shows that starvation and cAMP stimulation regulate P450c17 phosphorylation differentially and that an increase in P450c17 phosphorylation does not necessarily lead to enhanced enzyme activity and androgen production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein phosphorylation is involved in posttranslational control of essentially all biological processes. Using mass spectrometry, recent analyses of whole phosphoproteomes led to the identification of numerous new phosphorylation sites. However, the function of most of these sites remained unknown. We chose the Drosophila Bicaudal-D protein to estimate the importance of individual phosphorylation events. Being involved in different cellular processes, BicD is required for oocyte determination, for RNA transport during oogenesis and embryogenesis, and for photoreceptor nuclei migration in the developing eye. The numerous roles of BicD and the available evidence for functional importance of BicD phosphorylation led us to identify eight phosphorylation sites of BicD, and we tested a total of 14 identified and suspected phosphoserine residues for their functional importance in vivo in flies. Surprisingly, all these serines turned out to be dispensable for providing sufficient basal BicD activity for normal growth and development. However, in a genetically sensitized background where the BicD(A40V) protein variant provides only partial activity, serine 103 substitutions are not neutral anymore, but show surprising differences. The S103D substitution completely inactivates the protein, whereas S103A behaves neutral, and the S103F substitution, isolated in a genetic screen, restores BicD(A40V) function. Our results suggest that many BicD phosphorylation events may either be fortuitous or play a modulating function as shown for Ser(103). Remarkably, amongst the Drosophila serines we found phosphorylated, Ser(103) is the only one that is fully conserved in mammalian BicD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An L-amino acid oxidase (LAAO), NA-LAAO, was purified from the venom of Naja atra. Its N-terminal sequence shows great similarity with LAAOs from other snake venoms. NA-LAAO dose-dependently induced aggregation of washed human platelets. However, it had no activity on platelets in platelet-rich plasma. A low concentration of NA-LAAO greatly promoted the effect of hydrogen peroxide, whereas hydrogen peroxide itself had little activation effect on platelets. NA-LAAO induced tyrosine phosphorylation of a number of platelet proteins including Src kinase, spleen tyrosine kinase, and phospholipase Cgamma2. Unlike convulxin, Fc receptor gamma chain and T lymphocyte adapter protein are not phosphorylated in NA-LAAO-activated platelets, suggesting an activation mechanism different from the glycoprotein VI pathway. Catalase inhibited the platelet aggregation and platelet protein phosphorylation induced by NA-LAAO. NA-LAAO bound to fixed platelets as well as to platelet lysates of Western blots. Furthermore, affinity chromatography of platelet proteins on an NA-LAAO-Sepharose 4B column isolated a few platelet membrane proteins, suggesting that binding of NA-LAAO to the platelet membrane might play a role in its action on platelets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The apicomplexan parasites Theileria annulata and T. parva possess the ability to transform the infected host cell and induce uncontrolled proliferation. Residing free in the cytosol of its host leukocyte, the schizont is in a perfect position to manipulate host cell signaling pathways involved in regulating apoptosis, proliferation, and cell motility. While extensive Theileria-induced changes in host cell protein phosphorylation patterns have been reported, no Theileria-encoded kinases or phosphatases have been demonstrated - or are even predicted - to be associated with the schizont surface or secreted into the host cell. Instead, it seems that Theileria has evolved the capacity to modulate kinases of the host cell. In certain cases this involves “hijacking” pivotal kinases, such as the IκB kinase complex or the mitotic kinase polo-like kinase 1, recruiting them to the schizont surface. In this chapter the current understanding of Theileria-induced changes in host cell kinase activation is reviewed, and an attempt is made to link these events to phenotypic changes that occur in the cell in response to Theileria infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Camillo Golgi's "Reazione Nera" led to the discovery of dendritic spines, small appendages originating from dendritic shafts. With the advent of electron microscopy (EM) they were identified as sites of synaptic contact. Later it was found that changes in synaptic strength were associated with changes in the shape of dendritic spines. While live-cell imaging was advantageous in monitoring the time course of such changes in spine structure, EM is still the best method for the simultaneous visualization of all cellular components, including actual synaptic contacts, at high resolution. Immunogold labeling for EM reveals the precise localization of molecules in relation to synaptic structures. Previous EM studies of spines and synapses were performed in tissue subjected to aldehyde fixation and dehydration in ethanol, which is associated with protein denaturation and tissue shrinkage. It has remained an issue to what extent fine structural details are preserved when subjecting the tissue to these procedures. In the present review, we report recent studies on the fine structure of spines and synapses using high-pressure freezing (HPF), which avoids protein denaturation by aldehydes and results in an excellent preservation of ultrastructural detail. In these studies, HPF was used to monitor subtle fine-structural changes in spine shape associated with chemically induced long-term potentiation (cLTP) at identified hippocampal mossy fiber synapses. Changes in spine shape result from reorganization of the actin cytoskeleton. We report that cLTP was associated with decreased immunogold labeling for phosphorylated cofilin (p-cofilin), an actin-depolymerizing protein. Phosphorylation of cofilin renders it unable to depolymerize F-actin, which stabilizes the actin cytoskeleton. Decreased levels of p-cofilin, in turn, suggest increased actin turnover, possibly underlying the changes in spine shape associated with cLTP. The findings reviewed here establish HPF as an appropriate method for studying the fine structure and molecular composition of synapses on dendritic spines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we investigated the molecular mechanisms underlying the ATP analogue adenosine-5'-O-(3-thio)triphosphate-induced nucleocytoplasmic shuttling of the mRNA stabilizing factor HuR in human (h) mesangial cells (MC). Using synthetic protein kinase C (PKC) inhibitors and small interfering RNA approaches, we demonstrated that knockdown of PKC alpha efficiently blocked the ATP-dependent nuclear HuR export to the cytoplasm. The functional importance of PKC alpha in HuR shuttling is highlighted by the high cytosolic HuR content detected in hMC stably overexpressing PKC alpha compared with mock-transfected cells. The ATP-induced recruitment of HuR to the cytoplasm is preceded by a direct interaction of PKC alpha with nuclear HuR and accompanied by increased Ser phosphorylation as demonstrated by coimmunoprecipitation experiments. Mapping of putative PKC target sites identified serines 158 and 221 as being indispensable for HuR phosphorylation by PKC alpha. RNA pull-down assay and RNA electrophoretic mobility shift assay demonstrated that the HuR shuttling by ATP is accompanied by an increased HuR binding to cyclooxygenase (COX)-2 mRNA. Physiologically, the ATP-dependent increase in RNA binding is linked with an augmentation in COX-2 mRNA stability and subsequent increase in prostaglandin E(2) synthesis. Regulation of HuR via PKC alpha-dependent phosphorylation emphasizes the importance of posttranslational modification for stimulus-dependent HuR shuttling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of cellular pathways capable of limiting ischemia/reperfusion (I/R) injury remains a frontier in medicine, and its clinical relevance is urgent. Histidine triad nucleotide binding protein 1 (HINT1) is a tumor suppressor that influences apoptosis. Because apoptotic pathways are a feature of I/R injury, we asked whether Hint1 influences hepatic I/R injury. Hint1(-/-) and C57BL/6 mice were subjected to 70% liver ischemia followed by reperfusion for 3 or 24 hours or to a sham operation. The serum aminotransferase levels, histological lesions, apoptosis, reactive oxygen species, and expression of B cell lymphoma 2-associated X protein (Bax), heme oxygenase 1 (HO-1), interleukin-6 (IL-6), IL-10, tumor necrosis factor-a, Src, nuclear factor kappa B (p65/RelA), and c-Jun were quantified. The responses to toll-like receptor ligands and nicotinamide adenine dinucleotide phosphate oxidase activity in Kupffer cells were compared in Hint1(-/-) mice and C57BL/6 mice. After I/R, the levels of serum aminotransferases, parenchymal necrosis, and hepatocellular apoptosis were significantly lower in Hint1(-/-) mice versus control mice. Furthermore, Bax expression decreased more than 2-fold in Hint1(-/-) mice, and the increases in reactive oxygen species and HO-1 expression that were evident in wild-type mice after I/R were absent in Hint1(-/-) mice. The phosphorylation of Src and the nuclear translocation of p65 were increased in Hint1(-/-) mice, whereas the nuclear expression of phosphorylated c-Jun was decreased. The levels of the protective cytokines IL-6 and IL-10 were increased in Hint1(-/-) mice. These effects increased survival after I/R in mice lacking Hint1. Hint1(-/-) Kupffer cells were less activated than control cells after stimulation with lipopolysaccharides. CONCLUSION: The Hint1 protein influences the course of I/R injury, and its ablation in Kupffer cells may limit the extent of the injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in children. It is known that overexpression and/or amplification of the MYC oncogene is associated with poor clinical outcome, but the molecular mechanisms and the MYC downstream effectors in MB remain still elusive. Besides contributing to elucidate how progression of MB takes place, most importantly, the identification of novel MYC-target genes will suggest novel candidates for targeted therapy in MB. A group of 209 MYC-responsive genes was obtained from a complementary DNA microarray analysis of a MB-derived cell line, following MYC overexpression and silencing. Among the MYC-responsive genes, we identified the members of the bone morphogenetic protein (BMP) signaling pathway, which have a crucial role during the development of the cerebellum. In particular, the gene BMP7 was identified as a direct target of MYC. A positive correlation between MYC and BMP7 expression was documented by analyzing two distinct sets of primary MB samples. Functional studies in vitro using a small-molecule inhibitor of the BMP/SMAD signaling pathway reproduced the effect of the small interfering RNA-mediated silencing of BMP7. Both approaches led to a block of proliferation in a panel of MB cells and to inhibition of SMAD phosphorylation. Altogether, our findings indicate that high MYC levels drive BMP7 overexpression, promoting cell survival in MB cells. This observation suggests the potential relevance of targeting the BMP/SMAD pathway as a novel therapeutic approach for the treatment of childhood MB.