13 resultados para protein homeostasis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu(+) to the CopY repressor, thereby releasing its bound zinc and abolishing repressor-DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro. Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood. This manuscript describes the role of the serine/threonine protein phosphatase 2A (PP2A) in the regulation of NHE3 by dopamine. The PP2A regulatory subunit B56 delta (coded by the Ppp2r5d gene) directly associates with more than one region of the carboxy-terminal hydrophilic putative cytoplasmic domain of NHE3 (NHE3-cyto), as demonstrated by yeast-two-hybrid, co-immunoprecipitation, blot overlay and in vitro pull-down assays. Phosphorylated NHE3-cyto is a substrate for purified PP2A in an in vitro dephosphorylation reaction. In cultured renal cells, inhibition of PP2A by either okadaic acid or by overexpression of the simian virus 40 (SV40) small t antigen blocks the ability of dopamine to inhibit NHE3 activity and to reduce surface NHE3 protein. Dopamine-induced NHE3 redistribution is also blocked by okadaic acid ex vivo in rat kidney cortical slices. These studies demonstrate that PP2A is an integral and critical participant in the signal transduction pathway between dopamine receptor activation and NHE3 inhibition. Key words: Natriuresis, Sodium transport, Signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic biology has shown that the metabolic behavior of mammalian cells can be altered by genetic devices such as epigenetic and hysteretic switches, timers and oscillators, biocomputers, hormone systems and heterologous metabolic shunts. To explore the potential of such devices for therapeutic strategies, we designed a synthetic mammalian circuit to maintain uric acid homeostasis in the bloodstream, disturbance of which is associated with tumor lysis syndrome and gout. This synthetic device consists of a modified Deinococcus radiodurans-derived protein that senses uric acids levels and triggers dose-dependent derepression of a secretion-engineered Aspergillus flavus urate oxidase that eliminates uric acid. In urate oxidase-deficient mice, which develop acute hyperuricemia, the synthetic circuit decreased blood urate concentration to stable sub-pathologic levels in a dose-dependent manner and reduced uric acid crystal deposits in the kidney. Synthetic gene-network devices providing self-sufficient control of pathologic metabolites represent molecular prostheses, which may foster advances in future gene- and cell-based therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The homeodomain-only protein (HOP) contains an atypical homeodomain which is unable to bind to DNA due to mutations in residues important for DNA binding. Recently, HOP was reported to regulate proliferation/differentiation homeostasis in different cell types. In the present study, we performed transcriptional profiling of cultured primary human keratinocytes and noted a robust induction of HOP upon calcium-induced cell differentiation. Immunohistochemistry of human skin localized HOP to the granular layer in the epidermis. Overexpression of HOP using a lentiviral vector up-regulated FLG and LOR expression during keratinocyte differentiation. Conversely, decreasing HOP expression using small interfering RNA markedly reduced the calcium-induced expression of late markers of differentiation in vitro, with the most prominent effect on profilaggrin (FLG) mRNA. Moreover, mRNA levels of profilaggrin and loricrin were downregulated in the epidermis of HOP knockout mice. Analysis of skin disorders revealed altered HOP expression in lichen planus, psoriasis and squamous cell carcinoma (SCC). Our data indicate that HOP is a novel modulator of late terminal differentiation in keratinocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Retinol-binding protein 4 (RBP4) has recently been reported to be associated with insulin resistance and the metabolic syndrome. This study tested the hypothesis that RBP4 is a marker of insulin resistance and the metabolic syndrome in patients with type 2 diabetes or coronary artery disease (CAD) or in non-diabetic control subjects without CAD. METHODS: Serum RBP4 was measured in 365 men (126 with type 2 diabetes, 143 with CAD and 96 control subjects) and correlated with the homeostasis model assessment of insulin resistance index (HOMA-IR), components of the metabolic syndrome and lipoprotein metabolism. RBP4 was detected by ELISA and validated by quantitative Western blotting. RESULTS: RBP4 concentrations detected by ELISA were shown to be strongly associated with the results gained in quantitative Western blots. There were no associations of RBP4 with HOMA-IR or HbA(1c) in any of the groups studied. In patients with type 2 diabetes there were significant positive correlations of RBP4 with total cholesterol, LDL-cholesterol, VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity. In patients with CAD, there were significant associations of RBP4 with VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity, while non-diabetic control subjects without CAD showed positive correlations of RBP4 with VLDL-cholesterol and plasma triacylglycerol. CONCLUSIONS/INTERPRETATION: RBP4 does not seem to be a valuable marker for identification of the metabolic syndrome or insulin resistance in male patients with type 2 diabetes or CAD. Independent associations of RBP4 with pro-atherogenic lipoproteins and enzymes of lipoprotein metabolism indicate a possible role of RBP4 in lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to lipid-poor HDL and maintains cellular lipid homeostasis. Impaired ABCA1 function plays a role in lipid disorders, cardiovascular disease, atherosclerosis, and metabolic disorders. Despite the clinical importance of ABCA1, no method is available for quantifying ABCA1 protein. We developed a sensitive indirect competitive ELISA for measuring ABCA1 protein in human tissues using a commercial ABCA1 peptide and a polyclonal anti-ABCA1 antibody. The ELISA has a detection limit of 8 ng/well (0.08 mg/l) with a working range of 9-1000 ng/well (0.09-10 mg/l). Intra- and interassay coefficient of variations (CVs) were 6.4% and 9.6%, respectively. Good linearity (r = 0.97-0.99) was recorded in serial dilutions of human arterial and placental crude membrane preparations, and fibroblast lysates. The ELISA measurements for ABCA1 quantification in reference arterial tissues corresponded well with immunoblot analysis. The assay performance and clinical utility was evaluated with arterial tissues obtained from 15 controls and 44 patients with atherosclerotic plaques. ABCA1 protein concentrations in tissue lysates were significantly lower in patients (n = 24) as compared with controls (n = 5; 9.37 +/- 0.82 vs. 17.03 +/- 4.25 microg/g tissue; P < 0.01). The novel ELISA enables the quantification of ABCA1 protein in human tissues and confirms previous semiquantitative immunoblot results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic signatures. We identify cochaperone SIL1, mutated in Marinesco-Sjögren syndrome (MSS), as being robustly expressed in disease-resistant slow motor neurons but not in ER stress-prone fast-fatigable motor neurons. In a mouse model of MSS, we demonstrate impaired ER homeostasis in motor neurons in response to loss of SIL1 function. Loss of a single functional Sil1 allele in an ALS mouse model (SOD1-G93A) enhanced ER stress and exacerbated ALS pathology. In SOD1-G93A mice, SIL1 levels were progressively and selectively reduced in vulnerable fast-fatigable motor neurons. Mechanistically, reduction in SIL1 levels was associated with lowered excitability of fast-fatigable motor neurons, further influencing expression of specific ER chaperones. Adeno-associated virus-mediated delivery of SIL1 to familial ALS motor neurons restored ER homeostasis, delayed muscle denervation and prolonged survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.