7 resultados para protein diversity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scrapie is a transmissible spongiform encephalopathy (TSE) in sheep and goats. In recent years, atypical scrapie cases were identified that differed from classical scrapie in the molecular characteristics of the disease-associated pathological prion protein (PrP(sc)). In this study, we analyze the molecular and neuropathological phenotype of nine Swiss TSE cases in sheep and goats. One sheep was identified as classical scrapie, whereas six sheep, as well as two goats, were classified as atypical scrapie. The latter revealed a uniform electrophoretic mobility pattern of the proteinase K-resistant core fragment of PrP(sc) distinct from classical scrapie regardless of the genotype, the species, and the neuroanatomical structure. Remarkably different types of neuroanatomical PrP(sc) distribution were observed in atypical scrapie cases by both western immunoblotting and immunohistochemistry. Our findings indicate that the biodiversity in atypical scrapie is larger than expected and thus impacts on current sampling and testing strategies in small ruminant TSE surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrP(res)) in a highly scrapie-affected goat flock in Greece. The PrP(res) profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrP(res) fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrP(res) phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic and endocrine adaptations to support milk production during the transition period vary between individual cows. This variation between cows to adapt to lactation may have a genetic basis. The present field study was carried out to determine hepatic adaptations occurring from late pregnancy through early lactation by measuring mRNA abundance of candidate genes in dairy cows on-farm. Additionally, the objective was to observe the diversity in inter-individual variation for the candidate genes that may give indications where individual adaptations at a molecular level can be found. This study was carried out on-farm including 232 dairy cows (parity >3) from 64 farms in Switzerland. Blood and liver samples were collected on d 20+/-7 before parturition, on d 24+/-2, and on d 89+/-4 after parturition. Blood plasma was assayed for concentrations of glucose, nonesterified fatty acids, beta-hydroxybutyrate, cholesterol, triglycerides, urea, albumin, protein, insulin, insulin-like growth factor-1, leptin, 3,5,3'-triiodothyronine, and thyroxine. Liver samples were obtained at the same time points and were measured for mRNA abundance of 26 candidate genes encoding enzymes and nuclear receptors involved in gluconeogenesis, fatty acid beta-oxidation, fatty acid and triglyceride synthesis, ketogenesis, citric acid cycle, cholesterol synthesis, and the urea cycle. The cows in the present study experienced a marked metabolic load in early lactation, as presented by changes in plasma metabolites and hormones, and responded accordingly with upregulation and downregulation of almost all candidate genes involved in metabolic processes in the liver. The observed inter-individual variation for the candidate genes, which was highest for acetyl-CoA-carboxylase and glycerol-3-phosphate dehydrogenase 2, should be further investigated to unravel the regulation at molecular level for optimal adaptive performance in dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gap junctions are clustered channels between contacting cells through which direct intercellular communication via diffusion of ions and metabolites can occur. Two hemichannels, each built up of six connexin protein subunits in the plasma membrane of adjacent cells, can dock to each other to form conduits between cells. We have recently screened mouse and human genomic data bases and have found 19 connexin (Cx) genes in the mouse genome and 20 connexin genes in the human genome. One mouse connexin gene and two human connexin genes do not appear to have orthologs in the other genome. With three exceptions, the characterized connexin genes comprise two exons whereby the complete reading frame is located on the second exon. Targeted ablation of eleven mouse connexin genes revealed basic insights into the functional diversity of the connexin gene family. In addition, the phenotypes of human genetic disorders caused by mutated connexin genes further complement our understanding of connexin functions in the human organism. In this review we compare currently identified connexin genes in both the mouse and human genome and discuss the functions of gap junctions deduced from targeted mouse mutants and human genetic disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The onset of lactation in dairy cows represents a major metabolic challenge that involves large adaptations in glucose, fatty acid, and mineral metabolism to support lactation and to avoid metabolic dysfunction. The complex system of adaptation can differ considerably between cows, and may have a genetic base. In the present review, the variation in adaptive reactions in dairy cows is discussed. In these studies, the liver being a key metabolic regulator for understanding the variation in adaptive performance of the dairy cow was the main focus of research. Liver function was evaluated through gene expression measurements; to explain the associated phenotypic variability and to identify descriptors for metabolic robustness in dairy cows. Hence, the identified genes involved act as a connecting link between the genotype encoded on the DNA and the phenotypic expression of the target factors at a protein level. The integration of phenotypic data, including gene expression profiles, and genomic data will facilitate a better characterization of the complex interplay between these levels, and will improve the genetic understanding necessary to unravel a certain trait or multi-trait such as metabolic robustness in dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. Methods A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. Results The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. Conclusion A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.​cheminfo.​org/​pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB.