2 resultados para protection profile

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cultivation of dessert apples has to meet the consumer's increasing demand for high fruit quality and a sustainable mostly residue-free production while ensuring a competitive agricultural productivity. It is therefore of great interest to know the impact of different cultivation methods on the fruit quality and the chemical composition, respectively. Previous studies have demonstrated the feasibility of High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy directly performed on apple tissue as analytical tool for metabonomic studies. In this study, HR-MAS NMR spectroscopy is applied to apple tissue to analyze the metabolic profiles of apples grown under 3 different cultivation methods. Golden Delicious apples were grown applying organic (Bio), integrated (IP) and low-input (LI) plant protection strategies. A total of 70 1H HR-MAS NMR spectra were analyzed by means of principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Apples derived from Bio-production could be well separated from the two other cultivation methods applying both, PCA and PLS-DA. Apples obtained from integrated (IP) and low-input (LI) production discriminated when taking the third PLS-component into account. The identified chemical composition and the compounds responsible for the separation, i.e. the PLS-loadings, are discussed. The results are compared with fruit quality parameters assessed by conventional methods. The present study demonstrates the potential of HR-MAS NMR spectroscopy of fruit tissue as analytical tool for finding markers for specific fruit production conditions like the cultivation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Peripheral arterial disease (PAD) is a progressive vascular disease associated with a high risk of cardiovascular morbidity and death. Antithrombotic prevention is usually applied by prescribing the antiplatelet agent aspirin. However, in patients with PAD aspirin fails to provide protection against myocardial infarction and death, only reducing the risk of ischemic stroke. Platelets may play a role in disease development, but this has not been tested by proper mechanistic studies. In the present study, we performed a systematic evaluation of platelet reactivity in whole blood from patients with PAD using two high-throughput assays, i.e. multi-agonist testing of platelet activation by flow cytometry and multi-parameter testing of thrombus formation on spotted microarrays. METHODS Blood was obtained from 40 patients (38 on aspirin) with PAD in majority class IIa/IIb and from 40 age-matched control subjects. Whole-blood flow cytometry and multiparameter thrombus formation under high-shear flow conditions were determined using recently developed and validated assays. RESULTS Flow cytometry of whole blood samples from aspirin-treated patients demonstrated unchanged high platelet responsiveness towards ADP, slightly elevated responsiveness after glycoprotein VI stimulation, and decreased responsiveness after PAR1 thrombin receptor stimulation, compared to the control subjects. Most parameters of thrombus formation under flow were similarly high for the patient and control groups. However, in vitro aspirin treatment caused a marked reduction in thrombus formation, especially on collagen surfaces. When compared per subject, markers of ADP- and collagen-induced integrin activation (flow cytometry) strongly correlated with parameters of collagen-dependent thrombus formation under flow, indicative of a common, subject-dependent regulation of both processes. CONCLUSION Despite of the use of aspirin, most platelet activation properties were in the normal range in whole-blood from class II PAD patients. These data underline the need for more effective antithrombotic pharmacoprotection in PAD.