3 resultados para product design optimality

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Users of cochlear implant systems, that is, of auditory aids which stimulate the auditory nerve at the cochlea electrically, often complain about poor speech understanding in noisy environments. Despite the proven advantages of multimicrophone directional noise reduction systems for conventional hearing aids, only one major manufacturer has so far implemented such a system in a product, presumably because of the added power consumption and size. We present a physically small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. Supporting algorithms, which allow the adjustment of the opening angle and the maximum noise suppression, are proposed and evaluated. A portable real-time device for test in real acoustic environments is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Every joint registry aims to improve patient care by identifying implants that have an inferior performance. For this reason, each registry records the implant name that has been used in the individual patient. In most registries, a paper-based approach has been utilized for this purpose. However, in addition to being time-consuming, this approach does not account for the fact that failure patterns are not necessarily implant specific but can be associated with design features that are used in a number of implants. Therefore, we aimed to develop and evaluate an implant product library that allows both time saving barcode scanning on site in the hospital for the registration of the implant components and a detailed description of implant specifications. MATERIALS AND METHODS A task force consisting of representatives of the German Arthroplasty Registry, industry, and computer specialists agreed on a solution that allows barcode scanning of implant components and that also uses a detailed standardized classification describing arthroplasty components. The manufacturers classified all their components that are sold in Germany according to this classification. The implant database was analyzed regarding the completeness of components by algorithms and real-time data. RESULTS The implant library could be set up successfully. At this point, the implant database includes more than 38,000 items, of which all were classified by the manufacturers according to the predefined scheme. Using patient data from the German Arthroplasty Registry, several errors in the database were detected, all of which were corrected by the respective implant manufacturers. CONCLUSIONS The implant library that was developed for the German Arthroplasty Registry allows not only on-site barcode scanning for the registration of the implant components but also its classification tree allows a sophisticated analysis regarding implant characteristics, regardless of brand or manufacturer. The database is maintained by the implant manufacturers, thereby allowing registries to focus their resources on other areas of research. The database might represent a possible global model, which might encourage harmonization between joint replacement registries enabling comparisons between joint replacement registries.