22 resultados para prism-waveguide coupler
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE Dyslexia is the most common developmental reading disorder that affects language skills. Latent strabismus (heterophoria) has been suspected to be causally involved. Even though phoria correction in dyslexic children is commonly applied, the evidence in support of a benefit is poor. In order to provide experimental evidence on this issue, we simulated phoria in healthy readers by modifying the vergence tone required to maintain binocular alignment. METHODS Vergence tone was altered with prisms that were placed in front of one eye in 16 healthy subjects to induce exophoria, esophoria, or vertical phoria. Subjects were to read one paragraph for each condition, from which reading speed was determined. Text comprehension was tested with a forced multiple choice test. Eye movements were recorded during reading and subsequently analyzed for saccadic amplitudes, saccades per 10 letters, percentage of regressive (backward) saccades, average fixation duration, first fixation duration on a word, and gaze duration. RESULTS Acute change of horizontal and vertical vergence tone does neither significantly affect reading performance nor reading associated eye movements. CONCLUSION Prisms in healthy subjects fail to induce a significant change of reading performance. This finding is not compatible with a role of phoria in dyslexia. Our results contrast the proposal for correcting small angle heterophorias in dyslexic children.
Resumo:
Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.
Resumo:
the modern joint protection (JP) concept for people with rheumatoid arthritis (RA) is an active coping strategy to improve daily tasks and role performance by changing working methods and using assistive devices. Effective group JP education includes psycho-educational interventions. The Pictorial Representation of Illness and Self Measure (PRISM) is an interactive hands-on-tool, assessing (a) the individual's perceived burden of illness and (b) relevant individual resources. Both issues are important for intrinsic motivation to take action and change behaviour. This study compared individual conventional JP education (C-JP) with PRISM-based JP education (PRISM-JP).
Resumo:
This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.
Resumo:
Joint protection (JP) education for people with rheumatoid arthritis (RA) is effective when applying psycho-educational teaching strategies. The Pictorial Representation of Illness and Self Measure (PRISM) was used to identify relevant JP education goals and life aspects, both supporting motivation and behaviour change. The objective of this study was to compare the effects of individual JP education, PRISM-based (PRISM-JP) vs. conventional (C-JP), in people with rheumatoid arthritis (RA).
Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings
Resumo:
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.
Resumo:
Here, we demonstrate the use of a colloidal CdSe:Te quantum dots suspension as active liquid-core in a specially designed optical element, based on a double-clad optical fiber structure. The liquid-core fiber was realized by filling the hollow core of a capillary and waveguiding of the core was ensured by using a liquid host that exhibits a larger refractive index than the cladding material of the capillary. Since the used capillary possessed a cladding waveguide structure, we obtained a liquid-core double-clad structure. To seal the liquid-core fiber and e.g. prevent the formation of bubbles, we developed a technique based on SMA connectors. The colloidal CdSe:Te quantum dots were excited by cladding-pumping using a pump laser at 532nm operating in the continuous-wave regime. We investigated the photoluminescence emitted from the colloidal CdSe:Te quantum dots suspension liquid-core and guided by the double-clad fiber structure. We observed a red shift of the (core) emission, that depends on the liquid-core fiber length and the pump power. This shift is due to the absorption of unexcited colloidal quantum dots and due to the waveguiding properties of the core. Here we report a core photoluminescence output power of 79.2μW (with an integrated brightness of ≈ 215.5 W/cm2sr ). Finally, we give an explanation, why lasing could not be observed in our experiments when setup as a liquid-core fiber cavity.
Resumo:
Natal teeth have been defined as teeth which are present at birth, while neonatal teeth erupt during the first 30 days. Their occurrence is rare, the prevalence ranges from 1:2000 to 1:3000 with a higher frequency in the lip and palate clefts and syndroms. In about 85% natal or neonatal teeth are lower central incisors (60% in pairs), rare are upper teeth, molars and multiple teeth. In almost 90% they are part of the deciduous dentition. A lot of possible causes of early eruption are discussed, but only the relation to hereditary factors seems to be evident. An autosomal dominant trait is often described. The appearance of these teeth is dependent on the degree of maturity, but most of the time it is loose, small, discoloured and hypoplastic. Histologically, enamel hypoplasia with normal prism structure is apparent. No significant disturbances of the dentin structures are observed, only cervically dentin becomes atubular with spaces and enclosed cells. A large vascular pulp and failure of root formation are further investigations. Our microhardness measurements showed values from 24.3-32.4 KHN for enamel and 48.3-62.2 KHN for dentin, while normal deciduous teeth have an enamel hardness of 322.0 +/- 17.5 KHN. The thickness of enamel was never more than 280 microm compared to up to 1200 microm in normal teeth. This shows the retarded development of natal and neonatal teeth, because mineralization has not finished at the time of birth. In accordance with developmental age tooth structure and appearence are normal. In consideration of complications as Riga-Fede-disease, feeding problems, possibility of infection and hypermobility most of the time extraction is the treatment of choice, but in the interest of protecting the child this decision should be made carefully.