18 resultados para premotor

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain. Results Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. Conclusions The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altered frontal white matter integrity has been reported in major depression. Still, the behavioral correlates of these alterations are not established. In healthy subjects, motor activity correlated with white matter integrity in the motor system. To explore the relation of white matter integrity and motor activity in major depressive disorder, we investigated 21 medicated patients with major depressive disorder and 21 matched controls using diffusion tensor imaging and wrist actigraphy at the same day. Patients had lower activity levels (AL) compared with controls. Fractional anisotropy (FA) differed between groups in frontal white matter regions and the posterior cingulum. AL was linearly associated with white matter integrity in two clusters within the motor system. Controls had an exclusive positive association of FA and AL in white matter underneath the right dorsal premotor cortex. Only patients had a positive association within the posterior cingulum. Furthermore, patients had negative associations of FA and AL underneath the left primary motor cortex and within the left parahippocampal gyrus white matter. These differences in the associations between structure and behavior may contribute to well-known impaired motor planning or gait disturbances in major depressive disorder. Therefore, signs of psychomotor slowing in major depressive disorder may be linked to changes of the white matter integrity of the motor system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: Recent anatomical-functional studies have transformed our understanding of cerebral motor control away from a hierarchical structure and toward parallel and interconnected specialized circuits. Subcortical electrical stimulation during awake surgery provides a unique opportunity to identify white matter tracts involved in motor control. For the first time, this study reports the findings on motor modulatory responses evoked by subcortical stimulation and investigates the cortico-subcortical connectivity of cerebral motor control. Experimental design: Twenty-one selected patients were operated while awake for frontal, insular, and parietal diffuse low-grade gliomas. Subcortical electrostimulation mapping was used to search for interference with voluntary movements. The corresponding stimulation sites were localized on brain schemas using the anterior and posterior commissures method. Principal observations: Subcortical negative motor responses were evoked in 20/21 patients, whereas acceleration of voluntary movements and positive motor responses were observed in three and five patients, respectively. The majority of the stimulation sites were detected rostral of the corticospinal tract near the vertical anterior-commissural line, and additional sites were seen in the frontal and parietal white matter. Conclusions: The diverse interferences with motor function resulting in inhibition and acceleration imply a modulatory influence of the detected fiber network. The subcortical stimulation sites were distributed veil-like, anterior to the primary motor fibers, suggesting descending pathways originating from premotor areas known for negative motor response characteristics. Further stimulation sites in the parietal white matter as well as in the anterior arm of the internal capsule indicate a large-scale fronto-parietal motor control network. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical schizophrenia literature reports motor symptoms as characteristic of the disorder. After the introduction of neuroleptic drugs, the existence of genuine motor disorders was challenged. Renewed interest arose as symptoms were found in never-medicated patients. Reports focused on abnormal involuntary movements, parkinsonism, neurological soft signs, catatonia, negative symptoms, or psychomotor slowing. Since these syndromes refer to different concepts, however, the definitions are not congruent and the symptoms overlap. The prevalence rates of motor symptoms in schizophrenia are surprisingly high, and recent studies indicate a possible pathobiology. In particular, the development and maturation of the human motor system appears to be closely linked to the emergence of motor symptoms observed in schizophrenia. Post-mortem and neuroimaging results demonstrated aberrant structure and function of premotor and motor cortices, basal ganglia, thalamus, and the connecting white matter tracts. Animal models have focused on aberrant neurotransmission and genetic contributions. Findings of localized abnormal oligodendrocyte function and myelination point to the special role of the white matter in schizophrenia, and recent studies specifically found an association between motor abnormalities and white matter structure in schizophrenia. This review of the literature supports the idea that motor symptoms are closely related to the neurodevelopmental disturbances of schizophrenia and a distinct syndromal dimension with its own pathophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The voluntary control of micturition is believed to be integrated by complex interactions among the brainstem, subcortical areas and cortical areas. Several brain imaging studies using positron emission tomography (PET) have demonstrated that frontal brain areas, the limbic system, the pons and the premotor cortical areas were involved. However, the cortical and subcortical brain areas have not yet been precisely identified and their exact function is not yet completely understood. MATERIALS AND METHODS: This study used functional magnetic resonance imaging (fMRI) to compare brain activity during passive filling and emptying of the bladder. A cathetherism of the bladder was performed in seven healthy subjects (one man and six right-handed women). During scanning, the bladder was alternatively filled and emptied at a constant rate with bladder rincing solution. RESULTS: Comparison between passive filling of the bladder and emptying of the bladder showed an increased brain activity in the right inferior frontal gyrus, cerebellum, symmetrically in the operculum and mesial frontal. Subcortical areas were not evaluated. CONCLUSIONS: Our results suggest that several cortical brain areas are involved in the regulation of micturition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: We sought to investigate the activity of bilateral parietal and premotor areas during a Go/No Go paradigm involving praxis movements of the dominant hand. METHODS: A sentence was presented which instructed subjects on what movement to make (S1; for example, "Show me how to use a hammer."). After an 8-s delay, "Go" or "No Go" (S2) was presented. If Go, they were instructed to make the movement described in the S1 instruction sentence as quickly as possible, and continuously until the "Rest" cue was presented 3 s later. If No Go, subjects were to simply relax until the next instruction sentence. Event-related potentials (ERP) and event-related desynchronization (ERD) in the beta band (18-22 Hz) were evaluated for three time bins: after S1, after S2, and from -2.5 to -1.5 s before the S2 period. RESULTS: Bilateral premotor ERP was greater than bilateral parietal ERP after the S2 Go compared with the No Go. Additionally, left premotor ERP was greater than that from the right premotor area. There was predominant left parietal ERD immediately after S1 for both Go and No Go, which was sustained for the duration of the interval between S1 and S2. For both S2 stimuli, predominant left parietal ERD was again seen when compared to that from the left premotor or right parietal area. However, the left parietal ERD was greater for Go than No Go. CONCLUSION: The results suggest a dominant role in the left parietal cortex for planning, executing, and suppressing praxis movements. The ERP and ERD show different patterns of activation and may reflect distinct neural movement-related activities. SIGNIFICANCE: The data can guide further studies to determine the neurophysiological changes occurring in apraxia patients and help explain the unique error profiles seen in patients with left parietal damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preclinical studies using animal models have shown that grey matter plasticity in both perilesional and distant neural networks contributes to behavioural recovery of sensorimotor functions after ischaemic cortical stroke. Whether such morphological changes can be detected after human cortical stroke is not yet known, but this would be essential to better understand post-stroke brain architecture and its impact on recovery. Using serial behavioural and high-resolution magnetic resonance imaging (MRI) measurements, we tracked recovery of dexterous hand function in 28 patients with ischaemic stroke involving the primary sensorimotor cortices. We were able to classify three recovery subgroups (fast, slow, and poor) using response feature analysis of individual recovery curves. To detect areas with significant longitudinal grey matter volume (GMV) change, we performed tensor-based morphometry of MRI data acquired in the subacute phase, i.e. after the stage compromised by acute oedema and inflammation. We found significant GMV expansion in the perilesional premotor cortex, ipsilesional mediodorsal thalamus, and caudate nucleus, and GMV contraction in the contralesional cerebellum. According to an interaction model, patients with fast recovery had more perilesional than subcortical expansion, whereas the contrary was true for patients with impaired recovery. Also, there were significant voxel-wise correlations between motor performance and ipsilesional GMV contraction in the posterior parietal lobes and expansion in dorsolateral prefrontal cortex. In sum, perilesional GMV expansion is associated with successful recovery after cortical stroke, possibly reflecting the restructuring of local cortical networks. Distant changes within the prefrontal-striato-thalamic network are related to impaired recovery, probably indicating higher demands on cognitive control of motor behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Daily we cope with upcoming potentially disadvantageous events. Therefore, it makes sense to be prepared for the worst case. Such a 'pessimistic' bias is reflected in brain activation during emotion processing. Healthy individuals underwent functional neuroimaging while viewing emotional stimuli that were earlier cued ambiguously or unambiguously concerning their emotional valence. Presentation of ambiguously announced pleasant pictures compared with unambiguously announced pleasant pictures resulted in increased activity in the ventrolateral prefrontal, premotor and temporal cortex, and in the caudate nucleus. This was not the case for the respective negative conditions. This indicates that pleasant stimuli after ambiguous cueing provided 'unexpected' emotional input, resulting in the adaptation of brain activity. It strengthens the hypothesis of a 'pessimistic' bias of brain activation toward ambiguous emotional events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Schizophrenia patients frequently suffer from complex motor abnormalities including fine and gross motor disturbances, abnormal involuntary movements, neurological soft signs and parkinsonism. These symptoms occur early in the course of the disease, continue in chronic patients and may deteriorate with antipsychotic medication. Furthermore gesture performance is impaired in patients, including the pantomime of tool use. Whether schizophrenia patients would show difficulties of actual tool use has not yet been investigated. Human tool use is complex and relies on a network of distinct and distant brain areas. We therefore aim to test if schizophrenia patients had difficulties in tool use and to assess associations with structural brain imaging using voxel based morphometry (VBM) and tract based spatial statistics (TBSS). Methode: In total, 44 patients with schizophrenia (DSM-5 criteria; 59% men, mean age 38) underwent structural MR imaging and performed the Tool-Use test. The test examines the use of a scoop and a hammer in three conditions: pantomime (without the tool), demonstration (with the tool) and actual use (with a recipient object). T1-weighted images were processed using SPM8 and DTI-data using FSL TBSS routines. To assess structural alterations of impaired tool use we first compared gray matter (GM) volume in VBM and white matter (WM) integrity in TBSS data of patients with and without difficulties of actual tool use. Next we explored correlations of Tool use scores and VBM and TBSS data. Group comparisons were family wise error corrected for multiple tests. Correlations were uncorrected (p < 0.001) with a minimum cluster threshold of 17 voxels (equivalent to a map-wise false positive rate of alpha < 0.0001 using a Monte Carlo procedure). Results: Tool use was impaired in schizophrenia (43.2% pantomime, 11.6% demonstration, 11.6% use). Impairment was related to reduced GM volume and WM integrity. Whole brain analyses detected an effect in the SMA in group analysis. Correlations of tool use scores and brain structure revealed alterations in brain areas of the dorso-dorsal pathway (superior occipital gyrus, superior parietal lobule, and dorsal premotor area) and the ventro-dorsal pathways (middle occipital gyrus, inferior parietal lobule) the action network, as well as the insula and the left hippocampus. Furthermore, significant correlations within connecting fiber tracts - particularly alterations within the bilateral corona radiata superior and anterior as well as the corpus callosum -were associated with Tool use performance. Conclusions: Tool use performance was impaired in schizophrenia, which was associated with reduced GM volume in the action network. Our results are in line with reports of impaired tool use in patients with brain lesions particularly of the dorso-dorsal and ventro-dorsal stream of the action network. In addition an effect of tool use on WM integrity was shown within fiber tracts connecting regions important for planning and executing tool use. Furthermore, hippocampus is part of a brain system responsible for spatial memory and navigation.The results suggest that structural brain alterations in the common praxis network contribute to impaired tool use in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a devastating disorder thought to result mainly from cerebral pathology. Neuroimaging studies have provided a wealth of findings of brain dysfunction in schizophrenia. However, we are still far from understanding how particular symptoms can result from aberrant brain function. In this context, the high prevalence of motor symptoms in schizophrenia such as catatonia, neurological soft signs, parkinsonism, and abnormal involuntary movements is of particular interest. Here, the neuroimaging correlates of these motor symptoms are reviewed. For all investigated motor symptoms, neural correlates were found within the cerebral motor system. However, only a limited set of results exists for hypokinesia and neurological soft signs, while catatonia, abnormal involuntary movements and parkinsonian signs still remain understudied with neuroimaging methods. Soft signs have been associated with altered brain structure and function in cortical premotor and motor areas as well as cerebellum and thalamus. Hypokinesia is suggested to result from insufficient interaction of thalamocortical loops within the motor system. Future studies are needed to address the neural correlates of motor abnormalities in prodromal states, changes during the course of the illness, and the specific pathophysiology of catatonia, dyskinesia and parkinsonism in schizophrenia.