49 resultados para prediction model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th-90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40-111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69-215 Bq/m³) in the medium category, and 219 Bq/m³ (108-427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be robust through validation with an independent dataset. The model is appropriate for predicting radon level exposure of the Swiss population in epidemiological research. Nevertheless, some exposure misclassification and regression to the mean is unavoidable and should be taken into account in future applications of the model.
Resumo:
Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.
Resumo:
IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.
Resumo:
PURPOSE Rapid assessment and intervention is important for the prognosis of acutely ill patients admitted to the emergency department (ED). The aim of this study was to prospectively develop and validate a model predicting the risk of in-hospital death based on all available information available at the time of ED admission and to compare its discriminative performance with a non-systematic risk estimate by the triaging first health-care provider. METHODS Prospective cohort analysis based on a multivariable logistic regression for the probability of death. RESULTS A total of 8,607 consecutive admissions of 7,680 patients admitted to the ED of a tertiary care hospital were analysed. Most frequent APACHE II diagnostic categories at the time of admission were neurological (2,052, 24 %), trauma (1,522, 18 %), infection categories [1,328, 15 %; including sepsis (357, 4.1 %), severe sepsis (249, 2.9 %), septic shock (27, 0.3 %)], cardiovascular (1,022, 12 %), gastrointestinal (848, 10 %) and respiratory (449, 5 %). The predictors of the final model were age, prolonged capillary refill time, blood pressure, mechanical ventilation, oxygen saturation index, Glasgow coma score and APACHE II diagnostic category. The model showed good discriminative ability, with an area under the receiver operating characteristic curve of 0.92 and good internal validity. The model performed significantly better than non-systematic triaging of the patient. CONCLUSIONS The use of the prediction model can facilitate the identification of ED patients with higher mortality risk. The model performs better than a non-systematic assessment and may facilitate more rapid identification and commencement of treatment of patients at risk of an unfavourable outcome.
Resumo:
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
Resumo:
The updated Vienna Prediction Model for estimating recurrence risk after an unprovoked venous thromboembolism (VTE) has been developed to identify individuals at low risk for VTE recurrence in whom anticoagulation (AC) therapy may be stopped after 3 months. We externally validated the accuracy of the model to predict recurrent VTE in a prospective multicenter cohort of 156 patients aged ≥65 years with acute symptomatic unprovoked VTE who had received 3 to 12 months of AC. Patients with a predicted 12-month risk within the lowest quartile based on the updated Vienna Prediction Model were classified as low risk. The risk of recurrent VTE did not differ between low- vs higher-risk patients at 12 months (13% vs 10%; P = .77) and 24 months (15% vs 17%; P = 1.0). The area under the receiver operating characteristic curve for predicting VTE recurrence was 0.39 (95% confidence interval [CI], 0.25-0.52) at 12 months and 0.43 (95% CI, 0.31-0.54) at 24 months. In conclusion, in elderly patients with unprovoked VTE who have stopped AC, the updated Vienna Prediction Model does not discriminate between patients who develop recurrent VTE and those who do not. This study was registered at www.clinicaltrials.gov as #NCT00973596.
Resumo:
Objective: Impaired cognition is an important dimension in psychosis and its at-risk states. Research on the value of impaired cognition for psychosis prediction in at-risk samples, however, mainly relies on study-specific sample means of neurocognitive tests, which unlike widely available general test norms are difficult to translate into clinical practice. The aim of this study was to explore the combined predictive value of at-risk criteria and neurocognitive deficits according to test norms with a risk stratification approach. Method: Potential predictors of psychosis (neurocognitive deficits and at-risk criteria) over 24 months were investigated in 97 at-risk patients. Results: The final prediction model included (1) at-risk criteria (attenuated psychotic symptoms plus subjective cognitive disturbances) and (2) a processing speed deficit (digit symbol test). The model was stratified into 4 risk classes with hazard rates between 0.0 (both predictors absent) and 1.29 (both predictors present). Conclusions: The combination of a processing speed deficit and at-risk criteria provides an optimized stratified risk assessment. Based on neurocognitive test norms, the validity of our proposed 3 risk classes could easily be examined in independent at-risk samples and, pending positive validation results, our approach could easily be applied in clinical practice in the future.
Resumo:
OBJECTIVE Algorithms to predict the future long-term risk of patients with stable coronary artery disease (CAD) are rare. The VIenna and Ludwigshafen CAD (VILCAD) risk score was one of the first scores specifically tailored for this clinically important patient population. The aim of this study was to refine risk prediction in stable CAD creating a new prediction model encompassing various pathophysiological pathways. Therefore, we assessed the predictive power of 135 novel biomarkers for long-term mortality in patients with stable CAD. DESIGN, SETTING AND SUBJECTS We included 1275 patients with stable CAD from the LUdwigshafen RIsk and Cardiovascular health study with a median follow-up of 9.8 years to investigate whether the predictive power of the VILCAD score could be improved by the addition of novel biomarkers. Additional biomarkers were selected in a bootstrapping procedure based on Cox regression to determine the most informative predictors of mortality. RESULTS The final multivariable model encompassed nine clinical and biochemical markers: age, sex, left ventricular ejection fraction (LVEF), heart rate, N-terminal pro-brain natriuretic peptide, cystatin C, renin, 25OH-vitamin D3 and haemoglobin A1c. The extended VILCAD biomarker score achieved a significantly improved C-statistic (0.78 vs. 0.73; P = 0.035) and net reclassification index (14.9%; P < 0.001) compared to the original VILCAD score. Omitting LVEF, which might not be readily measureable in clinical practice, slightly reduced the accuracy of the new BIO-VILCAD score but still significantly improved risk classification (net reclassification improvement 12.5%; P < 0.001). CONCLUSION The VILCAD biomarker score based on routine parameters complemented by novel biomarkers outperforms previous risk algorithms and allows more accurate classification of patients with stable CAD, enabling physicians to choose more personalized treatment regimens for their patients.
Resumo:
BACKGROUND: Individual adaptation of processed patient's blood volume (PBV) should reduce number and/or duration of autologous peripheral blood progenitor cell (PBPC) collections. STUDY DESIGN AND METHODS: The durations of leukapheresis procedures were adapted by means of an interim analysis of harvested CD34+ cells to obtain the intended yield of CD34+ within as few and/or short as possible leukapheresis procedures. Absolute efficiency (AE; CD34+/kg body weight) and relative efficiency (RE; total CD34+ yield of single apheresis/total number of preapheresis CD34+) were calculated, assuming an intraapheresis recruitment if RE was greater than 1, and a yield prediction models for adults was generated. RESULTS: A total of 196 adults required a total of 266 PBPC collections. The median AE was 7.99 x 10(6), and the median RE was 1.76. The prediction model for AE showed a satisfactory predictive value for preapheresis CD34+ only. The prediction model for RE also showed a low predictive value (R2 = 0.36). Twenty-eight children underwent 44 PBPC collections. The median AE was 12.13 x 10(6), and the median RE was 1.62. Major complications comprised bleeding episodes related to central venous catheters (n = 4) and severe thrombocytopenia of less than 10 x 10(9) per L (n = 16). CONCLUSION: A CD34+ interim analysis is a suitable tool for individual adaptation of the duration of leukapheresis. During leukapheresis, a substantial recruitment of CD34+ was observed, resulting in a RE of greater than 1 in more than 75 percent of patients. The upper limit of processed PBV showing an intraapheresis CD34+ recruitment is higher than in a standard large-volume leukapheresis. Therefore, a reduction of individually needed PBPC collections by means of a further escalation of the processed PBV seems possible.
Resumo:
PURPOSE: The goal of this study was to analyse a possible association of admission blood glucose with hospital mortality of polytraumatised patients and to develop an outcome prediction model for this patient group. METHODS: The outcome of adult polytraumatised patients admitted to the University Hospital of Berne, Switzerland, between 2002 and 2004 with an ISS > or = 17, and more than one severely injured organ system was retrospectively analysed. RESULTS: The inclusion criteria were met by 555 patients, of which 108 (19.5%) died. Hyperglycaemia proved to be an independent predictor for hospital mortality (P < 0.0001), following multiple regression analysis. After inclusion of admission blood glucose, the calculated mortality prediction model performed better than currently described models (P < 0.0001, AUC 0.924). CONCLUSION: In this retrospective, single-centre study in polytraumatised patients, admission blood glucose proved to be an independent predictor of hospital mortality following regression analysis controlling for age, gender, injury severity and other laboratory parameters. A reliable admission blood glucose-based mortality prediction model for polytraumatised patients could be established. This observation may be helpful in improving the precision of future outcome prediction models for polytraumatised patients. These observations warrant further prospective evaluation.
Resumo:
AIM To identify novel variants associated with anthracycline-induced cardiotoxicity and to assess these in a genotype-guided risk prediction model. PATIENTS & METHODS Two cohorts treated for childhood cancer (n = 344 and 218, respectively) were genotyped for 4578 SNPs in drug ADME and toxicity genes. RESULTS Significant associations were identified in SLC22A17 (rs4982753; p = 0.0078) and SLC22A7 (rs4149178; p = 0.0034), with replication in the second cohort (p = 0.0071 and 0.047, respectively). Additional evidence was found for SULT2B1 and several genes related to oxidative stress. Adding the SLC22 variants to the prediction model improved its discriminative ability (AUC 0.78 vs 0.75 [p = 0.029]). CONCLUSION Two novel variants in SLC22A17 and SLC22A7 were significantly associated with anthracycline-induced cardiotoxicity and improved a genotype-guided risk prediction model, which could improve patient risk stratification.
Resumo:
Objective The validity of current ultra-high risk (UHR) criteria is under-examined in help-seeking minors, particularly, in children below the age of 12 years. Thus, the present study investigated predictors of one-year outcome in children and adolescents (CAD) with UHR status. Method Thirty-five children and adolescents (age 9–17 years) meeting UHR criteria according to the Structured Interview for Psychosis-Risk Syndromes were followed-up for 12 months. Regression analyses were employed to detect baseline predictors of conversion to psychosis and of outcome of non-converters (remission and persistence of UHR versus conversion). Results At one-year follow-up, 20% of patients had developed schizophrenia, 25.7% had remitted from their UHR status that, consequently, had persisted in 54.3%. No patient had fully remitted from mental disorders, even if UHR status was not maintained. Conversion was best predicted by any transient psychotic symptom and a disorganized communication score. No prediction model for outcome beyond conversion was identified. Conclusions Our findings provide the first evidence for the predictive utility of UHR criteria in CAD in terms of brief intermittent psychotic symptoms (BIPS) when accompanied by signs of cognitive impairment, i.e. disorganized communication. However, because attenuated psychotic symptoms (APS) related to thought content and perception were indicative of non-conversion at 1-year follow-up, their use in early detection of psychosis in CAD needs further study. Overall, the need for more in-depth studies into developmental peculiarities in the early detection and treatment of psychoses with an onset of illness in childhood and early adolescence was further highlighted.
Resumo:
CONTEXT Hyperthyroidism is an established risk factor for atrial fibrillation (AF), but information concerning the association with variations within the normal range of thyroid function and subgroups at risk is lacking. OBJECTIVE This study aimed to investigate the association between normal thyroid function and AF prospectively and explore potential differential risk patterns. DESIGN, SETTING, AND PARTICIPANTS From the Rotterdam Study we included 9166 participants ≥ 45 y with TSH and/or free T4 (FT4) measurements and AF assessment (1997-2012 median followup, 6.8 y), with 399 prevalent and 403 incident AF cases. MAIN OUTCOME MEASURES Outcome measures were 3-fold: 1) hazard ratios (HRs) for the risk of incident AF by Cox proportional-hazards models, 2) 10-year absolute risks taking competing risk of death into account, and 3) discrimination ability of adding FT4 to the CHARGE-AF simple model, an established prediction model for AF. RESULTS Higher FT4 levels were associated with higher risks of AF (HR 1.63, 95% confidence interval, 1.19-2.22), when comparing those in the highest quartile to those in lowest quartile. Absolute 10-year risks increased with higher FT4 in participants ≤ 65 y from 1-9% and from 6-12% in subjects ≥ 65 y. Discrimination of the prediction model improved when adding FT4 to the simple model (c-statistic, 0.722 vs 0.729; P = .039). TSH levels were not associated with AF. CONCLUSIONS There is an increased risk of AF with higher FT4 levels within the normal range, especially in younger subjects. Adding FT4 to the simple model slightly improved discrimination of risk prediction.
Resumo:
Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected.