2 resultados para power lines
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The relation between residential magnetic field exposure from power lines and mortality from neurodegenerative conditions was analyzed among 4.7 million persons of the Swiss National Cohort (linking mortality and census data), covering the period 2000-2005. Cox proportional hazard models were used to analyze the relation of living in the proximity of 220-380 kV power lines and the risk of death from neurodegenerative diseases, with adjustment for a range of potential confounders. Overall, the adjusted hazard ratio for Alzheimer's disease in persons living within 50 m of a 220-380 kV power line was 1.24 (95% confidence interval (CI): 0.80, 1.92) compared with persons who lived at a distance of 600 m or more. There was a dose-response relation with respect to years of residence in the immediate vicinity of power lines and Alzheimer's disease: Persons living at least 5 years within 50 m had an adjusted hazard ratio of 1.51 (95% CI: 0.91, 2.51), increasing to 1.78 (95% CI: 1.07, 2.96) with at least 10 years and to 2.00 (95% CI: 1.21, 3.33) with at least 15 years. The pattern was similar for senile dementia. There was little evidence for an increased risk of amyotrophic lateral sclerosis, Parkinson's disease, or multiple sclerosis.
Resumo:
Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.