24 resultados para porphyrin, ferrocene, quinonene, energy transfer, electron transfer
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.
Resumo:
The interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor, FcεRI, plays a central role in initiating most allergic reactions. The IgE-receptor interaction has been targeted for treatment of allergic diseases, and many high-affinity macromolecular inhibitors have been identified. Small molecule inhibitors would offer significant advantages over current anti-IgE treatment, but no candidate compounds have been identified and fully validated. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring the IgE-receptor interaction. The TR-FRET assay measures an increase in fluorescence intensity as a donor lanthanide fluorophore is recruited into complexes of site-specific Alexa Fluor 488-labeled IgE-Fc and His-tagged FcεRIα proteins. The assay can readily monitor classic competitive inhibitors that bind either IgE-Fc or FcεRIα in equilibrium competition binding experiments. Furthermore, the TR-FRET assay can also be used to follow the kinetics of IgE-Fc-FcεRIα dissociation and identify inhibitory ligands that accelerate the dissociation of preformed complexes, as demonstrated for an engineered DARPin (designed ankyrin repeat protein) inhibitor. The TR-FRET assay is suitable for high-throughput screening (HTS), as shown by performing a pilot screen of the National Institutes of Health (NIH) Clinical Collection Library in a 384-well plate format.
Resumo:
The realisation of molecular assemblies featuring specific macroscopic properties is a prime example for the versatility of supramolecular organisation. Microporous materials such as zeolite L are well suited for the preparation of host-guest composites containing dyes, complexes, or clusters. This short tutorial focuses on the possibilities offered by zeolite L to study and influence Förster resonance energy transfer inside of its nanochannels. The highly organised host-guest materials can in turn be structured on a larger scale to form macroscopic patterns, making it possible to create large-scale structures from small, highly organised building blocks for novel optical applications.
Resumo:
The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.