9 resultados para population estimation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

During November 2010–February 2011, we used camera traps to estimate the population density of Eurasian lynx Lynx lynx in Ciglikara Nature Reserve, Turkey, an isolated population in southwest Asia. Lynx density was calculated through spatial capture—recapture models. In a sampling eff ort of 1093 camera trap days, we identifi ed 15 independent individuals and estimated a density of 4.20 independent lynx per 100 km2, an unreported high density for this species. Camera trap results also indicated that the lynx is likely to be preying on brown hare Lepus europaeus, which accounted for 63% of the non-target species pictured. As lagomorph populations tend to fl uctuate, the high lynx density recorded in Ciglikara may be temporary and may decline with prey fl uctuation. Therefore we recommend to survey other protected areas in southwestern Turkey where lynx is known or assumed to exist, and continuously monitor the lynx populations with reliable methods in order to understand the populations structure and dynamics, defi ne sensible measures and management plans to conserve this important species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE The present study aimed at the comparison of body height estimations from cadaver length with body height estimations according to Trotter and Gleser (1952) and Penning and Riepert (2003) on the basis of femoral F1 section measurements in post-mortem computed tomography (PMCT) images. METHODS In a post-mortem study in a contemporary Swiss population (226 corpses: 143 males (mean age: 53±17years) and 83 females (mean age: 61±20years)) femoral F1 measurements (403 femora: 199 right and 204 left; 177 pairs) were conducted in PMCT images and F1 was used for body height estimation using the equations after Trotter and Gleser (1952, "American Whites"), and Penning and Riepert (2003). RESULTS The mean observed cadaver length was 176.6cm in males and 163.6cm in females. Mean measured femoral length F1 was 47.5cm (males) and 44.1cm (females) respectively. Comparison of body height estimated from PMCT F1 measurements with body height calculated from cadaver length showed a close congruence (mean difference less than 0.95cm in males and less than 1.99cm in females) for equations both applied after Penning and Riepert and Trotter and Gleser. CONCLUSIONS Femoral F1 measurements in PMCT images are very accurate, reproducible and feasible for body height estimation of a contemporary Swiss population when using the equations after Penning and Riepert (2003) or Trotter and Gleser (1952).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective population size is an important parameter for the assessment of genetic diversity within a livestock population and its development over time. If pedigree information is not available, linkage disequilibrium (LD) analysis might offer an alternative perspective for the estimation of effective population size. In this study, 128 individuals of the Swiss Eringer breed were genotyped using the Illumina BovineSNP50 beadchip. We set bin size at 50 kb for LD analysis, assuming that LD for proximal single nucleotide polymorphism (SNP)-pairs reflects distant breeding history while LD from distal SNP-pairs would reflect near history. Recombination rates varied among different regions of the genome. The use of physical distances as an approximation of genetic distances (e.g. setting 1 Mb = 0.01 Morgan) led to an upward bias in LD-based estimates of effective population size for generations beyond 50, while estimates for recent history were unaffected. Correction for restricted sample size did not substantially affect these results. LD-based actual effective population size was estimated in the range of 87-149, whereas pedigree-based effective population size resulted in 321 individuals. For conservation purposes, requiring knowledge of recent history (<50 generations), approximation assuming constant recombination rate seemed adequate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine tuberculosis (bTB) caused by Mycobacterium bovis or M. caprae has recently (re-) emerged in livestock and wildlife in all countries bordering Switzerland (CH) and the Principality of Liechtenstein (FL). Comprehensive data for Swiss and Liechtenstein wildlife are not available so far, although two native species, wild boar (Sus scrofa) and red deer (Cervus elaphus elaphus), act as bTB reservoirs elsewhere in continental Europe. Our aims were (1) to assess the occurrence of bTB in these wild ungulates in CH/FL and to reinforce scanning surveillance in all wild mammals; (2) to evaluate the risk of a future bTB reservoir formation in wild boar and red deer in CH/FL. Tissue samples collected from 2009 to 2011 from 434 hunted red deer and wild boar and from eight diseased ungulates with tuberculosis-like lesions were tested by direct real-time PCR and culture to detect mycobacteria of the Mycobacterium tuberculosis complex (MTBC). Identification of suspicious colonies was attempted by real-time PCR, genotyping and spoligotyping. Information on risk factors for bTB maintenance within wildlife populations was retrieved from the literature and the situation regarding identified factors was assessed for our study areas. Mycobacteria of the MTBC were detected in six out of 165 wild boar (3.6%; 95% CI: 1.4-7.8) but none of the 269 red deer (0%; 0-1.4). M. microti was identified in two MTBC-positive wild boar, while species identification remained unsuccessful in four cases. Main risk factors for bTB maintenance worldwide, including different causes of aggregation often resulting from intensive wildlife management, are largely absent in CH and FL. In conclusion, M. bovis and M. caprae were not detected but we report for the first time MTBC mycobacteria in Swiss wild boar. Present conditions seem unfavorable for a reservoir emergence, nevertheless increasing population numbers of wild ungulates and offal consumption may represent a risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For swine dysentery, which is caused by Brachyspira hyodysenteriae infection and is an economically important disease in intensive pig production systems worldwide, a perfect or error-free diagnostic test ("gold standard") is not available. In the absence of a gold standard, Bayesian latent class modelling is a well-established methodology for robust diagnostic test evaluation. In contrast to risk factor studies in food animals, where adjustment for within group correlations is both usual and required for good statistical practice, diagnostic test evaluation studies rarely take such clustering aspects into account, which can result in misleading results. The aim of the present study was to estimate test accuracies of a PCR originally designed for use as a confirmatory test, displaying a high diagnostic specificity, and cultural examination for B. hyodysenteriae. This estimation was conducted based on results of 239 samples from 103 herds originating from routine diagnostic sampling. Using Bayesian latent class modelling comprising of a hierarchical beta-binomial approach (which allowed prevalence across individual herds to vary as herd level random effect), robust estimates for the sensitivities of PCR and culture, as well as for the specificity of PCR, were obtained. The estimated diagnostic sensitivity of PCR (95% CI) and culture were 73.2% (62.3; 82.9) and 88.6% (74.9; 99.3), respectively. The estimated specificity of the PCR was 96.2% (90.9; 99.8). For test evaluation studies, a Bayesian latent class approach is well suited for addressing the considerable complexities of population structure in food animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After attending this presentation, attendees will: (1) understand how body height from computed tomography data can be estimated; and, (2) gain knowledge about the accuracy of estimated body height and limitations. The presentation will impact the forensic science community by providing knowledge and competence which will enable attendees to develop formulas for single bones to reconstruct body height using postmortem Computer Tomography (p-CT) data. The estimation of Body Height (BH) is an important component of the identification of corpses and skeletal remains. Stature can be estimated with relative accuracy via the measurement of long bones, such as the femora. Compared to time-consuming maceration procedures, p-CT allows fast and simple measurements of bones. This study undertook four objectives concerning the accuracy of BH estimation via p-CT: (1) accuracy between measurements on native bone and p-CT imaged bone (F1 according to Martin 1914); (2) intra-observer p-CT measurement precision; (3) accuracy between formula-based estimation of the BH and conventional body length measurement during autopsy; and, (4) accuracy of different estimation formulas available.1 In the first step, the accuracy of measurements in the CT compared to those obtained using an osteometric board was evaluated on the basis of eight defleshed femora. Then the femora of 83 female and 144 male corpses of a Swiss population for which p-CTs had been performed, were measured at the Institute of Forensic Medicine in Bern. After two months, 20 individuals were measured again in order to assess the intraobserver error. The mean age of the men was 53±17 years and that of the women was 61±20 years. Additionally, the body length of the corpses was measured conventionally. The mean body length was 176.6±7.2cm for men and 163.6±7.8cm for women. The images that were obtained using a six-slice CT were reconstructed with a slice thickness of 1.25mm. Analysis and measurements of CT images were performed on a multipurpose workstation. As a forensic standard procedure, stature was estimated by means of the regression equations by Penning & Riepert developed on a Southern German population and for comparison, also those referenced by Trotter & Gleser “American White.”2,3 All statistical tests were performed with a statistical software. No significant differences were found between the CT and osteometric board measurements. The double p-CT measurement of 20 individuals resulted in an absolute intra-observer difference of 0.4±0.3mm. For both sexes, the correlation between the body length and the estimated BH using the F1 measurements was highly significant. The correlation coefficient was slightly higher for women. The differences in accuracy of the different formulas were small. While the errors of BH estimation were generally ±4.5–5.0cm, the consideration of age led to an increase in accuracy of a few millimetres to about 1cm. BH estimations according to Penning & Riepert and Trotter & Gleser were slightly more accurate when age-at-death was taken into account.2,3 That way, stature estimations in the group of individuals older than 60 years were improved by about 2.4cm and 3.1cm.2,3 The error of estimation is therefore about a third of the common ±4.7cm error range. Femur measurements in p-CT allow very accurate BH estimations. Estimations according to Penning led to good results that (barely) come closer to the true value than the frequently used formulas by Trotter & Gleser “American White.”2,3 Therefore, the formulas by Penning & Riepert are also validated for this substantial recent Swiss population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.