3 resultados para polyester

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of complex aortic pathologies involving the ascending aorta, the aortic arch, and the descending aorta remains a challenging issue in aortic surgery. The frozen elephant trunk procedure effectively combines surgical and interventional technologies in the treatment of extensive aortic aneurysms and dissections. We present two patients with complex aortic lesions involving all three segments of the thoracic aorta. The device used in our series is the new E-vita open hybrid prosthesis consisting of a proximal woven polyester tube and a distal self-expandable nitinol stent graft, which can be delivered antegrade into the descending aorta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The purpose of this article is to assess the healing qualities of presealed knitted polyester prostheses. METHODS: Thoracic aortic replacement was performed with grafts with four different coating materials-collagen (CP), albumin (AP), and two with gelatin (GP1/GP2)-in four groups of 15 pigs each. Two weeks, 6 weeks, and 6 months after operation, five pigs of each group were killed. Healing quality was assessed by morphometric analysis of the remaining coating, the extent of tissue ingrowth, and the thickness of the inner layer. RESULTS: The sealant was rapidly absorbed in all prostheses except for the AP (remaining coating at 2 weeks: GP1 22.1%, GP2 34.7%, and CP 68.0% vs AP 97.1% [p < 0.05]), remaining coating at 6 weeks: GP1/GP2 0% and CP 2.5% vs AP 76.7% (p < .01). At 6 months, remaining coating was only detectable in AP (21.5%). At 2 weeks the extent of tissue ingrowth ranged from 65.7% in GP1 and 75.3% in CP to 80% in GP2 versus 8.9% in AP (p < 0.05). There was a slow increase of tissue ingrowth until the sixth postoperative week (GP1 74.4%, GP2 85.0%, and CP 91.3% versus AP 19.6% [p < 0.01]). Thickness of the internal layer varied from 0.11 to 0.21 mm at 2 weeks in all grafts studied and from 1.02 mm (AP) and 1.28 mm (GP2) to 1.39 mm (GP1), versus 0.41 mm in the CP (p < 0.01) after 6 months of implantation. CONCLUSIONS: The type of coating significantly influences the healing properties of knitted polyester prostheses. When used for thoracic aortic replacement in pigs, AP coating clearly results in inferior healing compared with GP1/GP2 or CP impregnation, with digestion of the coating material and tissue ingrowth used as parameters. The thinnest internal layer was found in the CP prostheses, reflecting superior healing properties of this coating in the model studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indocyanine green (ICG) is a chemically labile compound which needs to be stabilized in aqueous media to be used in biomedical applications. In the present study, poly(ε-caprolactone) (PCL), a semi-crystalline polyester, was used to encapsulate and stabilize ICG in a hydrophobic environment. A hydrophobic and biocompatible nanocomposite was obtained by the process of encapsulating inorganic silica. ICG was embedded in the hydrophobic polymer coating by starting from a well-defined silica (Si) core of either 80 nm or 120 nm diameter, which served as a template for a ‘grafting from’ approach using ε-caprolactone. The obtained nanocomposite Si grafted PCL/ICG was based on silica nanoparticles grafted with PCL, in which ICG was adsorbed. The nanoparticles were characterized by IR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The change in the surface charge and the colloidal stability of the nanoparticles was followed by zeta potential measurements. This approach of synthesizing nanocomposite-based ICG demonstrates a new route to stabilize ICG. We synthesized biocompatible nanoparticles containing a high ICG concentration and exhibiting excellent stability to aqueous decomposition.