71 resultados para pollen load size and phenotypic variation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Plant survival in alpine landscapes is constantly challenged by the harsh and often unpredictable environmental conditions. Steep environmental gradients and patchy distribution of habitats lead to small size and spatial isolation of populations and restrict gene flow. Agricultural land use has further increased the diversity of habitats below and above the treeline. We studied the consequences of the highly structured alpine landscape for evolutionary processes in four study plants: Epilobium fleischeri, Geum reptans, Campanula thyrsoides and Poa alpina. The main questions were: (1) How is genetic diversity distributed within and among populations and is it affected by altitude, population size or land use? (2) Do reproductive traits such as allocation to sexual or vegetative reproduction vary with altitude or land use? Furthermore, we studied if seed weight increases with altitude. Within-population genetic diversity of the four species was high and mostly not related to altitude and population size. Nevertheless, genetic differentiation among populations was pronounced and strongly increasing with distance. In Poa alpina genetic diversity was affected by land use. Results suggest considerable genetic drift among populations of alpine plants. Reproductive allocation was affected by altitude and land use in Poa alpina and by succession in Geum reptans. Seed weight was usually higher in alpine species than in related lowland species. We conclude that the evolutionary potential to respond to global change is mostly intact in alpine plants, even at high altitude. Phenotypic variability is shaped by adaptive as well as by random evolutionary processes; moreover plastic responses to growth conditions seem to be crucial for survival of plants in the alpine landscape.
Resumo:
Over 75% of obese subjects fail to maintain their weight following weight loss interventions. We aimed to identify phenotypic and genetic markers associated with weight maintenance/regain following a dietary intervention.
Resumo:
Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Resumo:
OBJECTIVE: Dynamic ventilation (3)He-MRI is a new method to assess pulmonary gas inflow. As differing airway diameters throughout the ventilatory cycle can influence gas inflow this study intends to investigate the influence of volume and timing of a He gas bolus with respect to the beginning of the tidal volume on inspiratory gas distribution. MATERIALS AND METHODS: An ultrafast 2-dimensional spoiled gradient echo sequence (temporal resolution 100 milliseconds) was used for dynamic ventilation (3)He-MRI of 11 anesthetized and mechanically ventilated pigs. The applied (3)He gas bolus was varied in volume between 100 and 200 mL. A 150-mL bolus was varied in its application time after the beginning of the tidal volume between 0 and 1200 milliseconds. Signal kinetics were evaluated using an in-house developed software after definition of parameters for the quantitative description of (3)He gas inflow. RESULTS: The signal rise time (time interval between signal in the parenchyma reaches 10% and 90% of its maximum) was prolonged with increasing bolus volume. The parameter was shortened with increasing delay of (3)He application after the beginning of the tidal volume. Timing variation as well as volume variation showed no clear interrelation to the signal delay time 10 (time interval between signal in the trachea reaches 50% of its maximum and signal in the parenchyma reaches 10% of its maximum). CONCLUSIONS: Dynamic ventilation (3)He-MRI is able to detect differences in bolus geometry performed by volume variation. Pulmonary gas inflow as investigated by dynamic ventilation (3)He-MRI tends to be accelerated by an increasing application delay of a (3)He gas bolus after the beginning of the tidal volume.
Resumo:
Recurrent wheezing or asthma is a common problem in children that has increased considerably in prevalence in the past few decades. The causes and underlying mechanisms are poorly understood and it is thought that a numb er of distinct diseases causing similar symptoms are involved. Due to the lack of a biologically founded classification system, children are classified according to their observed disease related features (symptoms, signs, measurements) into phenotypes. The objectives of this PhD project were a) to develop tools for analysing phenotypic variation of a disease, and b) to examine phenotypic variability of wheezing among children by applying these tools to existing epidemiological data. A combination of graphical methods (multivariate co rrespondence analysis) and statistical models (latent variables models) was used. In a first phase, a model for discrete variability (latent class model) was applied to data on symptoms and measurements from an epidemiological study to identify distinct phenotypes of wheezing. In a second phase, the modelling framework was expanded to include continuous variability (e.g. along a severity gradient) and combinations of discrete and continuo us variability (factor models and factor mixture models). The third phase focused on validating the methods using simulation studies. The main body of this thesis consists of 5 articles (3 published, 1 submitted and 1 to be submitted) including applications, methodological contributions and a review. The main findings and contributions were: 1) The application of a latent class model to epidemiological data (symptoms and physiological measurements) yielded plausible pheno types of wheezing with distinguishing characteristics that have previously been used as phenotype defining characteristics. 2) A method was proposed for including responses to conditional questions (e.g. questions on severity or triggers of wheezing are asked only to children with wheeze) in multivariate modelling.ii 3) A panel of clinicians was set up to agree on a plausible model for wheezing diseases. The model can be used to generate datasets for testing the modelling approach. 4) A critical review of methods for defining and validating phenotypes of wheeze in children was conducted. 5) The simulation studies showed that a parsimonious parameterisation of the models is required to identify the true underlying structure of the data. The developed approach can deal with some challenges of real-life cohort data such as variables of mixed mode (continuous and categorical), missing data and conditional questions. If carefully applied, the approach can be used to identify whether the underlying phenotypic variation is discrete (classes), continuous (factors) or a combination of these. These methods could help improve precision of research into causes and mechanisms and contribute to the development of a new classification of wheezing disorders in children and other diseases which are difficult to classify.
Resumo:
We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.
Resumo:
The objective of this study was to characterize empirically the association between vaccination coverage and the size and occurrence of measles epidemics in Germany. In order to achieve this we analysed data routinely collected by the Robert Koch Institute, which comprise the weekly number of reported measles cases at all ages as well as estimates of vaccination coverage at the average age of entry into the school system. Coverage levels within each federal state of Germany are incorporated into a multivariate time-series model for infectious disease counts, which captures occasional outbreaks by means of an autoregressive component. The observed incidence pattern of measles for all ages is best described by using the log proportion of unvaccinated school starters in the autoregressive component of the model.
Resumo:
Patients with critical limb ischaemia (CLI) unsuitable for revascularisation have a high rate of amputation and mortality (30% and 25% at 1 year, respectively). Localised gene therapy using plasmid DNA encoding acidic fibroblast growth factor (NV1FGF, riferminogene pecaplasmid) has showed an increased amputation-free survival in a phase II trial. This article provides the rationale, design and baseline characteristics of CLI patients enrolled in the pivotal phase III trial (EFC6145/TAMARIS).
Resumo:
George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.
Resumo:
The purpose of the study was to quantify and compare the effect of CT dose and of size and density of nodules on the detectability of lung nodules and to quantify the influence of CT dose on the size of the nodules.