11 resultados para plant age

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Senescence is a form of programmed cell death (PCD) which leads to the death of whole organs, e.g., leaves or flowers, and eventually to the death of entire plants. Like all forms of PCD, senescence is a highly regulated and energy consuming process. Senescence parameters, like protein content, chlorophyll content, expression of photosynthesis-associated genes or senescence-associated genes (SAGs), reveal that senescence occurs in old leaves derived from young plants (6 week old) as well as in young leaves derived from older plants (8 week old), indicating that it is governed by the actual age of the leaves. in order to analyse the differential gene expression profiles during leaf senescence, hybridizations of high-density genome arrays were performed with: i) individual leaves within the rosette of a 6-week-old plant and ii) leaves of the same position within the rosette but harvested from plants of different ages, ranging from 5 to 8 weeks. Cluster and genetree analyses, according to the expression pattern revealed that genes which are up-regulated with respect to the age of the entire plant, showed completely different expression profiles with respect to the age of the individual leaves within one rosette. This was observed even though the actual difference in leaf age was approximately the same. This indicates that gene expression appears to be governed by different parameters: i) the age of the individual leaf and ii) the age and developmental stage of the entire plant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plant defences vary in space and time, which may translate into specific herbivore-foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within-plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4-benzoxazin-3-one derivatives (BXDs), affects the foraging behaviour of two leaf-chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well-adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD-free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non-adapted herbivores and thereby likely contribute to feeding niche differentiation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Access to affordable and renewable sources of energy is crucial to reducing poverty and enhancing rural development in countries of the global South. Straight vegetable oil was recently identified as a possible alternative to conventional biomass for rural energy supply. In this context, the Jatropha curcas Linn. species has been extensively investigated with regard to its potential as a biofuel feedstock. In contrast, only little is known about Jatropha mahafalensis Jum. & H. Perrier, which is an indigenous and endemic representative of the Jatropha genus in Madagascar. This paper explores the potential and suitability of J. mahafalensis as a biofuel feedstock. Seed samples were collected in the area of Soalara in south-western Madagascar in February and September 2011. Two agro-ecological zones (coastal area and calcareous plateau) and two plant age groups (below and above 10 years) were considered. These four sample groups were analyzed with regard to oil properties, element contents, and fatty acid profiles. Measured values differed greatly between the two harvests, probably owing to different climatic or storage conditions. No direct relation between age of trees or location and oil quality could be established. The analyses indicate that J. mahafalensis oil can be used in oil lamps, cooking stoves and stationary combustion engines for electrification or for biodiesel production. However, modifications in storage and extraction methods, as well as further processing steps are necessary to enable its utilization as a straight vegetable oil and feedstock for biodiesel production. If these technical requirements can be met, and if it turns out that J. mahafalensis oil is economically competitive in comparison with firewood, charcoal, paraffin and petroleum, it can be considered as a promising feedstock for rural energy supply.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant’s highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mg g−1 range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a consequence of artificial selection for specific traits, crop plants underwent considerable genotypic and phenotypic changes during the process of domestication. These changes may have led to reduced resistance in the cultivated plant due to shifts in resource allocation from defensive traits to increased growth rates and yield. Modern maize (Zea mays ssp. mays) was domesticated from its ancestor Balsas teosinte (Z. mays ssp. parviglumis) approximately 9000 years ago. Although maize displays a high genetic overlap with its direct ancestor and other annual teosintes, several studies show that maize and its ancestors differ in their resistance phenotypes with teosintes being less susceptible to herbivore damage. However, the underlying mechanisms are poorly understood. Here we addressed the question to what extent maize domestication has affected two crucial chemical and one physical defence traits and whether differences in their expression may explain the differences in herbivore resistance levels. The ontogenetic trajectories of 1,4-benzoxazin-3-ones, maysin and leaf toughness were monitored for different leaf types across several maize cultivars and teosinte accessions during early vegetative growth stages. We found significant quantitative and qualitative differences in 1,4-benzoxazin-3-one accumulation in an initial pairwise comparison, but we did not find consistent differences between wild and cultivated genotypes during a more thorough examination employing several cultivars/accessions. Yet, 1,4-benzoxazin-3-one levels tended to decline more rapidly with plant age in the modern maize cultivars. Foliar maysin levels and leaf toughness increased with plant age in a leaf-specific manner, but were also unaffected by domestication. Based on our findings we suggest that defence traits other than the ones that were investigated are responsible for the observed differences in herbivore resistance between teosinte and maize. Furthermore, our results indicate that single pairwise comparisons may lead to false conclusions regarding the effects of domestication on defensive and possibly other traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study of patterns in the distribution and transmission of medicinal plant knowledge in rural Andean communities in Peru and Bolivia. Interviews and freelisting exercises were conducted with 18 households at each study site. The amount of medicinal plant knowledge of households was compared in relation to their socioeconomic characteristics. Cluster analysis was applied to identify households that possessed similar knowledge. The different modes of knowledge transmission were also assessed. Our study shows that while the amount of plant knowledge is determined by individual motivation and experience, the type of knowledge is influenced by the community of residence, age, migratory activity, and market integration. Plant knowledge was equally transmitted vertically and horizontally, which indicates that it is first acquired within the family but then undergoes transformations as a result of subsequent contacts with other knowledge sources, including age peers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions, we measured fine root radiocarbon (14C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27) than in forests 3.1 ± 0.5 g (n = 27) (p < 0.05), the mean age of C in fine roots in forests averaged 11.3 ± 1.8 yr and was older and more variable compared to grasslands 1.7 ± 0.4 yr (p < 0.001). We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated with plant diversity (r = 0.65) and with the number of perennial species (r = 0.77). Fine root mean C age in grasslands was also affected by study region with averages of 0.7 ± 0.1 yr (n = 9) on mostly organic soils in northern Germany and of 1.8 ± 0.3 yr (n = 9) and 2.6 ± 0.3 (n = 9) in central and southern Germany (p < 0.05). This was probably due to differences in soil nutrient contents and soil moisture conditions between study regions, which affected plant species diversity and the presence of perennial species. Our results indicate more long-lived roots or internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration. Methods Data collection was based on semi-structured interviews and freelisting exercises. Two ethnobotanical indices (Composite Salience, Cultural Importance) were used for calculating the cultural importance of plants. Intracultural variation in the cultural importance and knowledge of plants was detected by using linear and generalised linear (mixed) models. Results and discussion The culturally most important woody species were mainly trees and exotic species (e.g. Schinus molle, Prosopis laevigata, Eucalyptus globulus). We found that knowledge and valuation of plants increased with age but that they were lower for migrants; sex, by contrast, played a minor role. The age effects possibly result from decreasing ecological apparency of valuable native species, and their substitution by exotic marketable trees, loss of traditional plant uses or the use of other materials (e.g. plastic) instead of wood. Decreasing dedication to traditional farming may have led to successive abandonment of traditional tool uses, and the overall transformation of woody plant use is possibly related to diminishing medicinal knowledge. Conclusions Age and migration affect how people value woody species and what they know about their uses. For this reason, we recommend paying particular attention to the potential of native species, which could open promising perspectives especially for the young migrating peasant generation and draw their interest in agroforestry. These native species should be ecologically sound and selected on their potential to provide subsistence and promising commercial uses. In addition to offering socio-economic and environmental services, agroforestry initiatives using native trees and shrubs can play a crucial role in recovering elements of the lost ancient landscape that still forms part of local people’s collective identity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The palynostratigraphy of two sediment cores from Soppensee, Central Switzerland (596 m asl) was correlated with nine regional pollen assemblage zones defined for the Swiss Plateau. This biostratigraphy shows that the sedimentary record of Soppensee includes the last 15 000 years, i.e. the entire Late-glacial and Holocene environmental history. The vegetation history of the Soppensee catchment was inferred by pollen and plant-macrofossil analyses on three different cores taken in the deepest part of the lake basin (27 m). On the basis of a high-resolution varve and calibrated radiocarbonchronology it was possible to estimate pollen accumulation rates, which together with the pollen percentage data, formed the basis for the interpretation of the past vegetation dynamics. The basal sediment dates back to the last glacial. After reforestation with juniper and birch at ca. 12 700 B.P., the vegetation changed at around 12 000 B.P. to a pine-birch woodland and at the onset of the Holocene to a mixed deciduous forest. At ca. 7000 B.P., fir expanded and dominated the vegetation with beech becoming predominant at ca. 50014C-years later until sometime during the Iron Age. Large-scale deforestation, especially during the Middle Ages, altered the vegetation cover drastically. During the Late-glacial period two distinct regressive phases in vegetation development are demonstrated, namely, the Aegelsee oscillation (equivalent to the Older Dryas biozone) and the Younger Dryas biozone. No unambiguous evidence for Holocene climatic change was detected at Soppensee. Human presence is indicated by early cereal pollen and distinct pulses of forest clearance as a result of human activity can be observed from the Neolithic period onwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrofossil series from mountainous and polar areas such as the Alps, the Scandes, and the Rocky Mountains provide useful information about the late Quaternary course of treelines. Reconstructions of past treeline positions and compositions after the Ice Age can be used to infer paleoclimatic information or to study treeline ecosystem responses to (rapid) climatic change. Both approaches are illustrated by study cases. In addition to these paleoclimatic and paleoecological issues, macrofossil records can be used to validate dynamic treeline vegetation models. An example from the Alps shows the high potential of such a procedure towards applying forest-succession models for assessing future vegetation dynamics at treeline.