73 resultados para planar graph

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose WEAVE, a geographical 2D/3D routing protocol that maintains information on a small number of waypoints and checkpoints for forwarding packets to any destination. Nodes obtain the routing information from partial traces gathered in incoming packets and use a system of checkpoints along with the segments of routes to weave end-to-end paths close to the shortest ones. WEAVE does not generate any control traffic, it is suitable for routing in both 2D and 3D networks, and does not require any strong assumption on the underlying network graph such as the Unit Disk or a Planar Graph. WEAVE compares favorably with existing protocols in both testbed experiments and simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a well-established image modality in ophthalmology and used daily in the clinic. Automatic evaluation of such datasets requires an accurate segmentation of the retinal cell layers. However, due to the naturally low signal to noise ratio and the resulting bad image quality, this task remains challenging. We propose an automatic graph-based multi-surface segmentation algorithm that internally uses soft constraints to add prior information from a learned model. This improves the accuracy of the segmentation and increase the robustness to noise. Furthermore, we show that the graph size can be greatly reduced by applying a smart segmentation scheme. This allows the segmentation to be computed in seconds instead of minutes, without deteriorating the segmentation accuracy, making it ideal for a clinical setup. An extensive evaluation on 20 OCT datasets of healthy eyes was performed and showed a mean unsigned segmentation error of 3.05 ±0.54 μm over all datasets when compared to the average observer, which is lower than the inter-observer variability. Similar performance was measured for the task of drusen segmentation, demonstrating the usefulness of using soft constraints as a tool to deal with pathologies.