6 resultados para pine compost
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Growing evidence suggests environmental change to be most severe across the semi-arid subtropics, with past, present and projected drying of the Mediterranean Basin posing a key multidisciplinary challenge. Consideration of a single climatic factor, however, often fails to explain spatiotemporal growth dynamics of drought-prone ecosystems. Here, we present annually resolved and absolutely dated ring width measurements of 871 Scots pines (Pinus sylvestris) from 18 individual plot sites in the Central Spanish Pinar Grande forest reserve. Although comprising tree ages from 6 to 175 years, this network correlates surprisingly well with the inverse May–July diurnal temperature range (r = 0.84; p < 0.00011956–2011). Ring width extremes were triggered by pressure anomalies of the North Atlantic Oscillation, and the long-term growth decline coincided with Iberian-wide drying since the mid-1970s. Climate model simulations not only confirm this negative trend over the last decades but also project drought to continuously increase over the 21st century. Associated ecological effects and socio-economic consequences should be considered to improve adaptation strategies of agricultural and forest management, as well as biodiversity conservation and ecosystem service.
Resumo:
The European Mediterranean region is governed by a characteristic climate of summer drought that is likely to increase in duration and intensity under predicted climate change. However, large-scale network analyses investigating spatial aspects of pre-instrumental drought variability for this biogeographic zone are still scarce. In this study we introduce 54 mid- to high-elevation tree-ring width (TRW) chronologies comprising 2186 individual series from pine trees (Pinus spp.). This compilation spans a 4000-km east–west transect from Spain to Turkey, and was subjected to quality control and standardization prior to the development of site chronologies. A principal component analysis (PCA) was applied to identify spatial growth patterns during the network's common period 1862–1976, and new composite TRW chronologies were developed and investigated. The PCA reveals a common variance of 19.7% over the 54 Mediterranean pine chronologies. More interestingly, a dipole pattern in growth variability is found between the western (15% explained variance) and eastern (9.6%) sites, persisting back to 1330 AD. Pine growth on the Iberian Peninsula and Italy favours warm early growing seasons, but summer drought is most critical for ring width formation in the eastern Mediterranean region. Synoptic climate dynamics that have been in operation for the last seven centuries have been identified as the driving mechanism of a distinct east–west dipole in the growth variability of Mediterranean pines.
Resumo:
Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.